cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A349846 Expansion of -(1 - 8*x) / sqrt(1 - 4*x).

Original entry on oeis.org

-1, 6, 10, 28, 90, 308, 1092, 3960, 14586, 54340, 204204, 772616, 2939300, 11232648, 43088200, 165815280, 639859770, 2475036900, 9593714460, 37255818600, 144915581580, 564514356120, 2201964031800, 8599360982160, 33619842137700, 131570223027048, 515366318553912
Offset: 0

Views

Author

Jianing Song, Dec 01 2021

Keywords

Comments

Sum_{n>=0} (-a(n)/(-4)^n) is the Cauchy product of Sum_{n>=0} (-A349844(n)/(-8)^n) with itself.

Examples

			a(1) = binomial(0,0) * (4 + 2/1) = 6;
a(2) = binomial(2,1) * (4 + 2/2) = 10;
a(3) = binomial(4,2) * (4 + 2/3) = 28;
a(4) = binomial(6,3) * (4 + 2/4) = 90.
		

Crossrefs

Programs

  • PARI
    a(n) = if(n, binomial(2*(n-1),n-1) * (4 + 2/n), -1)

Formula

For n > 0, a(n) = 8*binomial(2*(n-1),n-1) - binomial(2*n,n) = binomial(2*(n-1),n-1) * (4 + 2/n).
a(n) ~ 4^n * (1/sqrt(Pi*n)).

A349845 Expansion of -(1 - 16*x)^(1/2) / (1 + 8*x)^(1/4).

Original entry on oeis.org

-1, 10, 6, 332, 1498, 29964, 269660, 4066456, 48190842, 679524828, 8993585460, 126419889960, 1757062172580, 25004701186680, 356647387079160, 5145713721249072, 74607994412294970, 1089344167433473788, 15981504546211353156, 235635552851036269704
Offset: 0

Views

Author

Jianing Song, Dec 01 2021

Keywords

Comments

Let b(n) = -a(n)/8^n, {b(n)} = {1, -5/4, -3/32, -83/128, -749/2048, -7491/8192, -67415/65536, ...}, then Sum_{n>=0} b(n) is clearly divergent since Sum_{n>=0} a(n)*x^n has radius of convergence 1/16. Let c(n) = A349847(n)/(-4)^n, {c(n)} = {1, -5/2, 11/8, -17/16, 115/128, -203/256, 735/1024, ...}, then Sum_{n>=0} c(n) is the Cauchy product of Sum_{n>=1} b(n) with itself. Since |c(n)| ~ 3/sqrt(Pi*n) and |c(n+1)|/|c(n)| = ((6*n+5)*(2*n-1)) / ((6*n-1)*(2*n+2)) < 1, Sum_{n>=0} c(n) is conditionally convergent by Leibniz's criterion. {b(n)} serves as an example such that the Cauchy product of a divergent series with itself can be conditionally convergent.

Examples

			Let C(n) denote the Catalan numbers, P = A004981.
a(0) = -P(0) = -1;
a(1) = 2^3 * C(0) * P(0) + P(1) = 10;
a(2) = -2^3 * C(0) * P(1) + 2^5 * C(1) * P(0) - P(2) = 6;
a(3) = 2^3 * C(0) * P(2) - 2^5 * C(1) * P(1) + 2^7 * C(2) * P(0) + P(3) = 332;
a(4) = -2^3 * C(0) * P(3) + 2^5 * C(1) * P(2) - 2^7 * C(2) * P(1) + 2^9 * C(3) * P(0) - P(4) = 1498.
		

Crossrefs

Programs

  • PARI
    C(n) = binomial(2*n,n)/(n+1)
    a(n) = sum(k=0, n-1, (-1)^(n-1-k) * 2^(2*k+3) * C(k) * A004981(n-1-k)) + (-1)^(n-1) * A004981(n) \\ See A004981 for its program

Formula

a(n) = (Sum_{k=0..n-1} (-1)^(n-1-k) * 2^(2*k+3) * CatalanNumber(k) * A004981(n-1-k)) + (-1)^(n-1) * A004981(n).
Showing 1-2 of 2 results.