cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349842 Expansion of 1/((1 - 2*x)*(1 + x + x^2 + x^3 + x^4)).

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 33, 66, 132, 264, 529, 1057, 2114, 4228, 8456, 16913, 33825, 67650, 135300, 270600, 541201, 1082401, 2164802, 4329604, 8659208, 17318417, 34636833, 69273666, 138547332, 277094664, 554189329, 1108378657, 2216757314, 4433514628, 8867029256, 17734058513
Offset: 0

Views

Author

Michael A. Allen, Dec 13 2021

Keywords

Comments

Number of ways to tile an n-board (an n X 1 array of 1 X 1 cells) using squares, dominoes, trominoes, tetrominoes, black pentominoes, and white pentominoes.
Row sums of A349841.

Crossrefs

Row sums of triangles in the same family as A349841: A000079, A001045, A077947, A115451.

Programs

  • Mathematica
    CoefficientList[Series[(1 - x)/((1 - x^5)(1 - 2x)), {x, 0, 35}], x]

Formula

a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + 2*a(n-5) + delta(n,0), a(n<0)=0.
a(n) = 2*a(n-1) + a(n-5) - 2*a(n-6) + delta(n,0) - delta(n,1), a(n<0)=0.
G.f.: 1/(1-x-x^2-x^3-x^4-2*x^5).