cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A349841 Triangle T(n,k) built by placing all ones on the left edge, [1,0,0,0,0] repeated on the right edge, and filling the body using the Pascal recurrence T(n,k) = T(n-1,k) + T(n-1,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 1, 1, 5, 10, 10, 5, 2, 0, 1, 6, 15, 20, 15, 7, 2, 0, 1, 7, 21, 35, 35, 22, 9, 2, 0, 1, 8, 28, 56, 70, 57, 31, 11, 2, 0, 1, 9, 36, 84, 126, 127, 88, 42, 13, 2, 1
Offset: 0

Views

Author

Michael A. Allen, Dec 13 2021

Keywords

Comments

This is the m=5 member in the sequence of triangles A007318, A059259, A118923, A349839, A349841 which have all ones on the left side, ones separated by m-1 zeros on the other side, and whose interiors obey Pascal's recurrence.
T(n,k) is the (n,n-k)-th entry of the (1/(1-x^5),x/(1-x)) Riordan array.
For n>0, T(n,n-1) = A002266(n+4).
For n>1, T(n,n-2) = A008732(n-2).
For n>2, T(n,n-3) = A122047(n-1).
Sums of rows give A349842.
Sums of antidiagonals give A349843.

Examples

			Triangle begins:
  1;
  1,   0;
  1,   1,   0;
  1,   2,   1,   0;
  1,   3,   3,   1,   0;
  1,   4,   6,   4,   1,   1;
  1,   5,  10,  10,   5,   2,   0;
  1,   6,  15,  20,  15,   7,   2,   0;
  1,   7,  21,  35,  35,  22,   9,   2,   0;
  1,   8,  28,  56,  70,  57,  31,  11,   2,   0;
  1,   9,  36,  84, 126, 127,  88,  42,  13,   2,   1;
		

Crossrefs

Other members of sequence of triangles: A007318, A059259, A118923, A349839.

Programs

  • Mathematica
    Flatten[Table[CoefficientList[Series[(1 - x*y)/((1 - (x*y)^5)(1 - x - x*y)), {x, 0, 20}, {y, 0, 10}], {x, y}][[n+1,k+1]],{n,0,10},{k,0,n}]]

Formula

G.f.: (1-x*y)/((1-(x*y)^5)(1-x-x*y)) in the sense that T(n,k) is the coefficient of x^n*y^k in the series expansion of the g.f.
T(n,0) = 1.
T(n,n) = delta(n mod 5,0).
T(n,1) = n-1 for n>0.
T(n,2) = (n-1)*(n-2)/2 for n>1.
T(n,3) = (n-1)*(n-2)*(n-3)/6 for n>2.
T(n,4) = (n-1)*(n-2)*(n-3)*(n-4)/24 for n>3.
T(n,5) = C(n-1,5) + 1 for n>4.
T(n,6) = C(n-1,6) + n - 6 for n>5.
For 0 <= k < n, T(n,k) = (n-k)*Sum_{j=0..floor(k/5)} binomial(n-5*j,n-k)/(n-5*j).
The g.f. of the n-th subdiagonal is 1/((1-x^5)(1-x)^n).

A119610 Number of cases in which the first player is killed in a Russian roulette game where 5 players use a gun with n chambers and the number of bullets can be from 1 to n. Players do not rotate the cylinder after the game starts.

Original entry on oeis.org

1, 2, 4, 8, 16, 33, 66, 132, 264, 528, 1057, 2114, 4228, 8456, 16912, 33825, 67650, 135300, 270600, 541200, 1082401, 2164802, 4329604, 8659208, 17318416, 34636833, 69273666, 138547332, 277094664, 554189328, 1108378657, 2216757314
Offset: 1

Views

Author

Ryohei Miyadera, Jun 04 2006

Keywords

Comments

Denote by U(p,n,m) the number of the cases in which the first player is killed in a Russian roulette game where p players use a gun with n chambers and m bullets. They never rotate the cylinder after the game starts. The chambers can be represented by the list {1,2,...,n}.
Here we let p = 5 to produce the above sequence, but p can be an arbitrary positive integer. By letting p = 2, 3, 4, 6, 7 we can produce sequences A000975, A033138, A083593, A195904 and A117302, respectively.
The number of cases for each of the situations identified below by (0), (1), ..., (t), where t = floor((n-m)/p), can be calculated separately:
(0) The first player is killed when one bullet is in the first chamber and the remaining m-1 bullets are in chambers {2,3,...,n}. There are binomial(n-1,m-1) cases for this situation.
(1) The first player is killed when one bullet is in the (p+1)-th chamber and the rest of the bullets are in chambers {p+2,...,n}. There are binomial(n-p-1,m-1) cases for this situation.
...
(t) The first player is killed when one bullet is in the (p*t+1)-th chamber and the remaining bullets are in chambers {p*t+2,...,n}. There are binomial(n-p*t-1,m-1) cases for this situation.
Therefore U(p,n,m) = Sum_{z=0..t} binomial(n-p*z-1,m-1), where t = floor((n-m)/p). Let A(p,n) be the number of the cases in which the first player is killed when p players use a gun with n chambers and the number of bullets can be from 1 to n. Then A(p,n) = Sum_{m=1..n} U(p,n,m).

Examples

			If the number of chambers is 3, then the number of the bullets can be 1, 2, or 3. The first player is killed when one bullet is in the first chamber, and the remaining bullets are in the second and third chambers. The only cases are {{1, 0, 0}, {1, 1, 0}, {1, 0, 1}, {1, 1, 1}}, where we denote by 1 a chamber that contains a bullet. Therefore a(3) = 4.
		

Crossrefs

Partial sums of A349842.

Programs

  • Magma
    I:=[1,2,4,8,16,33]; [n le 6 select I[n] else 2*Self(n-1)+Self(n-5)-2*Self(n-6): n in [1..40]]; // Vincenzo Librandi, Mar 18 2015
    
  • Maple
    seq(floor(2^(n+4)/31), n = 1..32); # Mircea Merca, Dec 22 2010
  • Mathematica
    U[p_,n_,m_,v_]:=Block[{t},t=Floor[(1+p-m+n-v)/p]; Sum[Binomial[n-v-p*z,m-1], {z,0,t-1}]];
    A[p_,n_,v_]:=Sum[U[p,n,k,v],{k,1,n}];
    (* Here we let p = 5 to produce the above sequence, but this code can produce A000975, A033138, A083593, A195904, A117302 for p = 2, 3, 4, 6, 7. *)
    Table[B[5,n,1],{n,1,20}] (* end of program *)
    CoefficientList[ Series[ 1/(2x^6 - x^5 - 2x + 1), {x, 0, 32}], x] (* or *)
    LinearRecurrence[{2, 0, 0, 0, 1, -2}, {1, 2, 4, 8, 16, 33}, 32] (* Robert G. Wilson v, Mar 12 2015 *)
  • PARI
    for(n=1,50, print1(floor(2^(n+4)/31), ", ")) \\ G. C. Greubel, Oct 11 2017

Formula

a(n) = floor(2^(n+4)/31), which is obtained by letting p=5 in a_p(n) = (2^(n + p-1) - 2^((n-1) mod p))/(2^p - 1).
From Joerg Arndt, Jan 08 2011: (Start)
G.f.: x / ( (x-1)*(2*x-1)*(x^4+x^3+x^2+x+1) ).
a(n) = +2*a(n-1) +a(n-5) -2*a(n-6). (End)
Showing 1-2 of 2 results.