A349877 a(n) is the number of times the map x -> A353314(x) needs to be applied to n to reach a multiple of 3, or -1 if the trajectory never reaches a multiple of 3.
0, 2, 14, 0, 1, 13, 0, 4, 1, 0, 12, 3, 0, 1, 3, 0, 4, 1, 0, 11, 2, 0, 1, 2, 0, 2, 1, 0, 2, 3, 0, 1, 3, 0, 10, 1, 0, 4, 5, 0, 1, 7, 0, 3, 1, 0, 3, 2, 0, 1, 2, 0, 2, 1, 0, 2, 4, 0, 1, 9, 0, 3, 1, 0, 3, 4, 0, 1, 5, 0, 6, 1, 0, 4, 2, 0, 1, 2, 0, 2, 1, 0, 2, 7, 0, 1, 4, 0, 6, 1, 0, 6, 3, 0, 1, 3, 0, 5, 1, 0, 8, 2, 0
Offset: 0
Examples
a(1) = 2 : 1 -> 4 -> 9 (as it takes two applications of A353314 to reach a multiple of three), a(2) = 14 : 2 -> 5 -> 10 -> 19 -> 34 -> 59 -> 100 -> 169 -> 284 -> 475 -> 794 -> 1325 -> 2210 -> 3685 -> 6144 a(3) = 0 : 3 (as the starting point 3 is already a multiple of 3). a(4) = 1 : 4 -> 9 a(7) = 4 : 7 -> 14 -> 25 -> 44 -> 75.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..19683
Programs
-
PARI
A353314(n) = { my(r=(n%3)); if(!r,n,((5*((n-r)/3)) + r + 3)); }; A349877(n) = { my(k=0); while(n%3, k++; n = A353314(n)); (k); }; \\ Antti Karttunen, Apr 14 2022
-
Python
import itertools def f(n): for i in itertools.count(): quot, rem = divmod(n, 3) if rem == 0: return i n = (5 * quot) + rem + 3
Formula
Extensions
Definition corrected and more terms from Antti Karttunen, Apr 14 2022
Comments