A349881 Expansion of Sum_{k>=0} x^k/(1 - k^4 * x).
1, 1, 2, 18, 339, 10915, 663140, 61264436, 8044351557, 1536980041573, 402558463751974, 137204787854813174, 60668198155262809815, 34351266752678243067591, 24185207999807747975188552, 20842786946335533698574605528
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..195
Programs
-
Mathematica
a[n_] := Sum[If[k == n - k == 0, 1, k^(4*(n - k))], {k, 0, n}]; Array[a, 16, 0] (* Amiram Eldar, Dec 04 2021 *)
-
PARI
a(n, s=0, t=4) = sum(k=0, n, k^(t*(n-k)+s));
-
PARI
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-k^4*x)))
Formula
a(n) = Sum_{k=0..n} k^(4*(n-k)).
a(n) ~ sqrt(Pi/2) * (n/LambertW(exp(1)*n))^(1/2 + 4*n - 4*n/LambertW(exp(1)*n)) / sqrt(1 + LambertW(exp(1)*n)). - Vaclav Kotesovec, Dec 04 2021
Comments