cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A359659 a(n) = Sum_{k=0..n} k^(k * (n-k+1)).

Original entry on oeis.org

1, 2, 6, 45, 1051, 88602, 27121964, 37004504305, 198705527223757, 5595513387083114570, 686714367475480207331582, 468422339816915120237104999421, 1664212116512828935888786624225704855
Offset: 0

Views

Author

Seiichi Manyama, Jan 10 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, k^(k*(n-k+1)));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-k^k*x)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(k+1)^(k+1)*x)))

Formula

G.f.: Sum_{k>=0} (k * x)^k/(1 - k^k * x).
G.f.: Sum_{k>=0} x^k/(1 - (k+1)^(k+1) * x).
a(n) = A349893(n+1) - 1.

A359660 a(n) = Sum_{k=0..n} k^(2 * (n-k) + 1).

Original entry on oeis.org

0, 1, 3, 12, 64, 441, 3855, 41464, 533736, 8071785, 141351715, 2829417276, 64038928728, 1624347614737, 45822087138879, 1427872211276376, 48858282302548240, 1826209988254883889, 74216973833968292451, 3265676709281560408780
Offset: 0

Views

Author

Seiichi Manyama, Jan 10 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=1, t=2) = sum(k=0, n, k^(t*(n-k)+s));
    
  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, k*x^k/(1-k^2*x))))

Formula

G.f.: Sum_{k>=0} k * x^k/(1 - k^2 * x).
Showing 1-2 of 2 results.