A349977 Inverse Euler transform of the classical tribonacci numbers.
0, 1, 1, 1, 3, 4, 8, 13, 23, 38, 68, 114, 201, 343, 600, 1037, 1817, 3157, 5543, 9692, 17047, 29952, 52828, 93157, 164743, 291459, 516679, 916626, 1628684, 2896261, 5156925, 9189769, 16393652, 29268223, 52300907, 93529331, 167390342, 299787639, 537281476
Offset: 1
Keywords
Programs
-
Mathematica
(* EulerInvTransform is defined in A022562. *) EulerInvTransform[LinearRecurrence[{1, 1, 1}, {0, 1, 1}, 40]]
-
Python
# After the Maple program of Alois P. Heinz in A349904. from functools import cache from math import comb def euler_inv_trans(a: callable, len: int): @cache def h(n: int, k: int): if n == 0: return 1 if k < 1: return 0 bk = b(k) R = range(int(bk == 0), 1 + n // k) return sum(comb(bk + j - 1, j) * h(n - k * j, k - 1) for j in R) @cache def b(n: int): return a(n - 1) - h(n, n - 1) return [b(n) for n in range(1, len)] @cache def tribonacci(n: int): return sum(tribonacci(n - j - 1) for j in range(3)) if n >= 3 else min(n, 1) print(euler_inv_trans(tribonacci, 40))
Comments