cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349905 Arithmetic derivative of A003961(n), where A003961 is fully multiplicative with a(p) = nextprime(p).

Original entry on oeis.org

0, 1, 1, 6, 1, 8, 1, 27, 10, 10, 1, 39, 1, 14, 12, 108, 1, 55, 1, 51, 16, 16, 1, 162, 14, 20, 75, 75, 1, 71, 1, 405, 18, 22, 18, 240, 1, 26, 22, 216, 1, 103, 1, 87, 95, 32, 1, 621, 22, 91, 24, 111, 1, 350, 20, 324, 28, 34, 1, 318, 1, 40, 135, 1458, 24, 119, 1, 123, 34, 131, 1, 945, 1, 44, 119, 147, 24, 151, 1, 837
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2021

Keywords

Crossrefs

Cf. A003415, A003961, A026424 (positions of odd terms), A028260 (of even terms), A066829 (parity of a(n)).
Cf. A358760, A358761, A358762, A358763 for indices of terms that of the form 4k+j, for j=0..3, and A358750, A358751, A358752, A358753 for their characteristic functions.

Programs

  • Mathematica
    f1[p_, e_] := e/p; d[1] = 0; d[n_] := n * Plus @@ f1 @@@ FactorInteger[n]; f2[p_, e_] := NextPrime[p]^e; s[1] = 1; s[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := d[s[n]]; Array[a, 100] (* Amiram Eldar, Dec 05 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A349905(n) = A003415(A003961(n));

Formula

a(n) = A003415(A003961(n)).