A349916 Sum of A113415 and its Dirichlet inverse, where A113415 is the arithmetic mean between the number and sum of the odd divisors of n.
2, 0, 0, 1, 0, 6, 0, 1, 9, 8, 0, 3, 0, 10, 24, 1, 0, 7, 0, 4, 30, 14, 0, 3, 16, 16, 21, 5, 0, 4, 0, 1, 42, 20, 40, 8, 0, 22, 48, 4, 0, 6, 0, 7, 40, 26, 0, 3, 25, 18, 60, 8, 0, 23, 56, 5, 66, 32, 0, 14, 0, 34, 53, 1, 64, 10, 0, 10, 78, 12, 0, 8, 0, 40, 70, 11, 70, 12, 0, 4, 61, 44, 0, 18, 80, 46, 96, 7, 0, 44, 80
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
Mathematica
s[n_] := DivisorSum[n, (# + 1) * Mod[#, 2] &] / 2; sinv[1] = 1; sinv[n_] := sinv[n] = -DivisorSum[n, sinv[#] * s[n/#] &, # < n &]; a[n_] := s[n] + sinv[n]; Array[a, 100] (* Amiram Eldar, Dec 08 2021 *)
-
PARI
A113415(n) = if(n<1, 0, sumdiv(n, d, if(d%2, (d+1)/2))); memoA349915 = Map(); A349915(n) = if(1==n,1,my(v); if(mapisdefined(memoA349915,n,&v), v, v = -sumdiv(n,d,if(d
A113415(n/d)*A349915(d),0)); mapput(memoA349915,n,v); (v))); A349916(n) = (A113415(n)+A349915(n));