cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349935 Array read by ascending antidiagonals: A(n, k) is the n-th spin s-Catalan number, with s = k/2.

Original entry on oeis.org

1, 0, 1, 2, 1, 1, 0, 3, 0, 1, 5, 6, 4, 1, 1, 0, 15, 0, 5, 0, 1, 14, 36, 34, 16, 6, 1, 1, 0, 91, 0, 65, 0, 7, 0, 1, 42, 232, 364, 260, 111, 31, 8, 1, 1, 0, 603, 0, 1085, 0, 175, 0, 9, 0, 1, 132, 1585, 4269, 4600, 2666, 981, 260, 51, 10, 1, 1, 0, 4213, 0, 19845, 0, 5719, 0, 369, 0, 11, 0, 1
Offset: 1

Views

Author

Stefano Spezia, Dec 06 2021

Keywords

Examples

			The array begins:
n\k | 1    2    3    4    5    6
----+---------------------------
  1 | 1    1    1    1    1    1 ...
  2 | 0    1    0    1    0    1 ...
  3 | 2    3    4    5    6    7 ...
  4 | 0    6    0   16    0   31 ...
  5 | 5   15   34   65  111  175 ...
  6 | 0   36    0  260    0  981 ...
  ...
		

Crossrefs

Cf. A000012 (1st row), A059841 (2nd row).
Cf. A349934.

Programs

  • Mathematica
    T[n_,k_,s_]:=If[k==0,1,Coefficient[(Sum[x^i,{i,0,s}])^n,x^k]]; A[n_,k_]:=T[n,k(n+1)/2,k]-T[n,k(n+1)/2+1,k]; Flatten[Table[A[n-k+1,k],{n,12},{k,n}]]

Formula

A(n, k) = T(n, k*(n+1)/2, k) - T(n, k*(n+1)/2+1, k), where T(n, k, s) is the s-binomial coefficient defined as the coefficient of x^k in (Sum_{i=0..s} x^i)^n.
A(n, 1) = A126120(n+1).
A(n, 2) = A005043(n+1).
A(3, n) = A000027(n+1).
A(4, 2*n) = A005891(n).
A(5, n) = A006003(n+1).