A349935 Array read by ascending antidiagonals: A(n, k) is the n-th spin s-Catalan number, with s = k/2.
1, 0, 1, 2, 1, 1, 0, 3, 0, 1, 5, 6, 4, 1, 1, 0, 15, 0, 5, 0, 1, 14, 36, 34, 16, 6, 1, 1, 0, 91, 0, 65, 0, 7, 0, 1, 42, 232, 364, 260, 111, 31, 8, 1, 1, 0, 603, 0, 1085, 0, 175, 0, 9, 0, 1, 132, 1585, 4269, 4600, 2666, 981, 260, 51, 10, 1, 1, 0, 4213, 0, 19845, 0, 5719, 0, 369, 0, 11, 0, 1
Offset: 1
Examples
The array begins: n\k | 1 2 3 4 5 6 ----+--------------------------- 1 | 1 1 1 1 1 1 ... 2 | 0 1 0 1 0 1 ... 3 | 2 3 4 5 6 7 ... 4 | 0 6 0 16 0 31 ... 5 | 5 15 34 65 111 175 ... 6 | 0 36 0 260 0 981 ... ...
Links
- William Linz, s-Catalan numbers and Littlewood-Richardson polynomials, arXiv:2110.12095 [math.CO], 2021. See p. 3.
Crossrefs
Programs
-
Mathematica
T[n_,k_,s_]:=If[k==0,1,Coefficient[(Sum[x^i,{i,0,s}])^n,x^k]]; A[n_,k_]:=T[n,k(n+1)/2,k]-T[n,k(n+1)/2+1,k]; Flatten[Table[A[n-k+1,k],{n,12},{k,n}]]