cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A349957 Number of ways to write n as x^4 + y^2 + (z^2 + 11*16^w)/60, where x,y,z are nonnegative integers, and w is 0 or 1.

Original entry on oeis.org

1, 2, 3, 5, 6, 4, 3, 3, 3, 4, 3, 4, 5, 3, 2, 2, 4, 4, 5, 9, 9, 3, 3, 4, 6, 5, 5, 9, 7, 4, 4, 6, 5, 2, 4, 8, 7, 3, 5, 7, 7, 4, 4, 4, 4, 4, 6, 9, 4, 3, 3, 9, 9, 4, 4, 5, 7, 2, 4, 4, 4, 2, 7, 7, 4, 3, 5, 12, 7, 3, 1, 6, 6, 4, 5, 8, 3, 1, 4, 5, 6, 3, 8, 14, 13, 6, 5, 5, 6, 6, 9, 8, 6, 3, 4, 8, 6, 6, 5, 12
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 06 2021

Keywords

Comments

Conjecture 1: a(n) > 0 for all n > 0.
This has been verified for n <= 10^6. It seems that a(n) = 1 only for n = 1, 71, 78, 247, 542, 1258, 1907, 5225, 19798.
Conjecture 2: (i) If a is 1 or 3, then each n = 0,1,2,... can be written as a*x^8 + y^2 + (7*z^4 + w^2)/64 with x,y,z,w nonnegative integers.
(ii) If a is among 1,2,5, then each n = 0,1,2,... can be written as a*x^8 + y^2 + (11*z^4 + w^2)/60 with x,y,z,w nonnegative integers.
Conjecture 3: If (a,b, m) is among the triples (1,7,8), (1,11,12), (2,7,8), (3,11,12), (5,7,8), then each n = 0,1,2,... can be written as a*x^4 + y^2 + (b*z^6 + w^2)/m with x,y,z,w nonnegative integers.
Conjecture 4: (i) If F(x,y,z,w) is x^6 + y^2 + (5*z^4 + 3*w^2)/16 or 3x^6 + 2*y^2 + (11*z^4 + w^2)/60, then each n = 0,1,2,... can be written as F(x,y,z,w) with x,y,z,w nonnegative integers.
(ii) If (a,b,m) is among the triples (1,7,64), (1,11,12), (1,11,60), (2,1,25), (2,1,65), (2,11,4), (2,11,20), (2,11,60), (4,2,9), (4,7,64), (5,11,60), (6,1,10), then each n = 0,1,2,... can be written as a*x^6 + y^2 + (b*z^4 + w^2)/m with x,y,z,w nonnegative integers.

Examples

			a(1) = 1 with 1 = 0^4 + 0^2 + (7^2 + 11*16^0)/60.
a(16) = 2 with 16 = 0^4 + 0^2 + (28^2 + 11*16)/60 = 1^4 + 2^2 + (22^2 + 11*16)/60.
a(71) = 1 with 71 = 0^4 + 2^2 + (62^2 + 11*16)/60.
a(78) = 1 with 78 = 2^4 + 5^2 + (47^2 + 11*16^0)/60.
a(247) = 1 with 247 = 3^4 + 3^2 + (97^2 + 11*16^0)/60.
a(542) = 1 with 542 = 3^4 + 21^2 + (32^2 + 11*16)/60.
a(1258) = 1 with 1258 = 2^4 + 15^2 + (247^2 + 11*16^0)/60.
a(1907) = 1 with 1907 = 0^4 + 0^2 + (338^2 + 11*16)/60.
a(5225) = 1 with 5225 = 5^4 + 58^2 + (272^2 + 11*16)/60.
a(19798) = 1 with 19798 = 1^4 + 137^2 + (248^2 + 11*16)/60.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[SQ[60(n-x^4-y^2)-11*16^z],r=r+1],{x,0,(n-1)^(1/4)},{y,0,Sqrt[n-1-x^4]},{z,0,1}];tab=Append[tab,r],{n,1,100}];Print[tab]

A349956 Number of ways to write n as x^2 + 2*y^2 + (z^4 + 4*w^4)/5 with x,y,z,w nonnegative integers.

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 1, 3, 4, 1, 2, 4, 5, 5, 6, 4, 3, 6, 3, 3, 6, 4, 3, 5, 4, 2, 5, 4, 6, 6, 6, 4, 6, 6, 2, 6, 4, 3, 3, 4, 4, 3, 4, 4, 7, 5, 6, 6, 5, 7, 6, 4, 4, 6, 2, 4, 7, 3, 4, 6, 7, 6, 11, 9, 4, 11, 6, 7, 9, 7, 3, 9, 8, 1, 7, 7, 8, 10, 11, 7, 10, 9, 5, 8, 9, 8, 3, 7, 6, 3, 6, 5, 10, 10, 10, 11
Offset: 0

Views

Author

Zhi-Wei Sun, Dec 06 2021

Keywords

Comments

a(n) > 0 for all n <= 10^5.
Conjecture: If m is 5 or 65 or 85, then each n = 0,1,2,... can be written as x^2 + 2*y^2 + (z^4 + 4*w^4)/m with x,y,z,w nonnegative integers.
It seems that there are infinitely many positive squarefree numbers m (including 3, 5, 15, 23, 31, 33, 37, 55, 59, 67, 69, 71, 89, 93, 97, 111, 113, 115) such that every n = 0,1,2,... can be written as x^4 + 2*y^4 + (z^2 + 11*w^2)/m with x,y,z,w nonnegative integers.

Examples

			a(11) = 1 with 11 = 3^2 + 2*1^2 + (0^4 + 4*0^4)/5.
a(14) = 1 with 14 = 1^2 + 2*0^2 + (1^4 + 4*2^4)/5.
a(78) = 1 with 78 = 7^2 + 2*0^2 + (3^4 + 4*2^4)/5.
a(155) = 1 with 155 = 11^2 + 2*3^2 + (2^4 + 4*2^4)/5.
a(174) = 1 with 174 = 7^2 + 2*0^2 + (5^4 + 4*0^4)/5.
		

Crossrefs

Programs

  • Mathematica
    QQ[n_]:=QQ[n]=IntegerQ[n^(1/4)];
    tab={};Do[r=0;Do[If[QQ[5(n-2x^2-y^2)-4z^4],r=r+1],{x,0,Sqrt[n/2]},{y,0,Sqrt[n-2x^2]},{z,0,(5(n-2x^2-y^2)/4)^(1/4)}];tab=Append[tab,r],{n,0,100}];Print[tab]
Showing 1-2 of 2 results.