A349957 Number of ways to write n as x^4 + y^2 + (z^2 + 11*16^w)/60, where x,y,z are nonnegative integers, and w is 0 or 1.
1, 2, 3, 5, 6, 4, 3, 3, 3, 4, 3, 4, 5, 3, 2, 2, 4, 4, 5, 9, 9, 3, 3, 4, 6, 5, 5, 9, 7, 4, 4, 6, 5, 2, 4, 8, 7, 3, 5, 7, 7, 4, 4, 4, 4, 4, 6, 9, 4, 3, 3, 9, 9, 4, 4, 5, 7, 2, 4, 4, 4, 2, 7, 7, 4, 3, 5, 12, 7, 3, 1, 6, 6, 4, 5, 8, 3, 1, 4, 5, 6, 3, 8, 14, 13, 6, 5, 5, 6, 6, 9, 8, 6, 3, 4, 8, 6, 6, 5, 12
Offset: 1
Keywords
Examples
a(1) = 1 with 1 = 0^4 + 0^2 + (7^2 + 11*16^0)/60. a(16) = 2 with 16 = 0^4 + 0^2 + (28^2 + 11*16)/60 = 1^4 + 2^2 + (22^2 + 11*16)/60. a(71) = 1 with 71 = 0^4 + 2^2 + (62^2 + 11*16)/60. a(78) = 1 with 78 = 2^4 + 5^2 + (47^2 + 11*16^0)/60. a(247) = 1 with 247 = 3^4 + 3^2 + (97^2 + 11*16^0)/60. a(542) = 1 with 542 = 3^4 + 21^2 + (32^2 + 11*16)/60. a(1258) = 1 with 1258 = 2^4 + 15^2 + (247^2 + 11*16^0)/60. a(1907) = 1 with 1907 = 0^4 + 0^2 + (338^2 + 11*16)/60. a(5225) = 1 with 5225 = 5^4 + 58^2 + (272^2 + 11*16)/60. a(19798) = 1 with 19798 = 1^4 + 137^2 + (248^2 + 11*16)/60.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167--190.
- Zhi-Wei Sun, New Conjectures in Number Theory and Combinatorics (in Chinese), Harbin Institute of Technology Press, 2021.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; tab={};Do[r=0;Do[If[SQ[60(n-x^4-y^2)-11*16^z],r=r+1],{x,0,(n-1)^(1/4)},{y,0,Sqrt[n-1-x^4]},{z,0,1}];tab=Append[tab,r],{n,1,100}];Print[tab]
Comments