A349956 Number of ways to write n as x^2 + 2*y^2 + (z^4 + 4*w^4)/5 with x,y,z,w nonnegative integers.
1, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 1, 3, 4, 1, 2, 4, 5, 5, 6, 4, 3, 6, 3, 3, 6, 4, 3, 5, 4, 2, 5, 4, 6, 6, 6, 4, 6, 6, 2, 6, 4, 3, 3, 4, 4, 3, 4, 4, 7, 5, 6, 6, 5, 7, 6, 4, 4, 6, 2, 4, 7, 3, 4, 6, 7, 6, 11, 9, 4, 11, 6, 7, 9, 7, 3, 9, 8, 1, 7, 7, 8, 10, 11, 7, 10, 9, 5, 8, 9, 8, 3, 7, 6, 3, 6, 5, 10, 10, 10, 11
Offset: 0
Keywords
Examples
a(11) = 1 with 11 = 3^2 + 2*1^2 + (0^4 + 4*0^4)/5. a(14) = 1 with 14 = 1^2 + 2*0^2 + (1^4 + 4*2^4)/5. a(78) = 1 with 78 = 7^2 + 2*0^2 + (3^4 + 4*2^4)/5. a(155) = 1 with 155 = 11^2 + 2*3^2 + (2^4 + 4*2^4)/5. a(174) = 1 with 174 = 7^2 + 2*0^2 + (5^4 + 4*0^4)/5.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167--190.
- Zhi-Wei Sun, New Conjectures in Number Theory and Combinatorics (in Chinese), Harbin Institute of Technology Press, 2021.
Programs
-
Mathematica
QQ[n_]:=QQ[n]=IntegerQ[n^(1/4)]; tab={};Do[r=0;Do[If[QQ[5(n-2x^2-y^2)-4z^4],r=r+1],{x,0,Sqrt[n/2]},{y,0,Sqrt[n-2x^2]},{z,0,(5(n-2x^2-y^2)/4)^(1/4)}];tab=Append[tab,r],{n,0,100}];Print[tab]
Comments