A349986 Numbers that can be represented as p^2 + p*q + q^2 where p and q are primes.
12, 19, 27, 39, 49, 67, 75, 79, 109, 147, 163, 199, 201, 217, 247, 259, 309, 327, 349, 363, 399, 403, 427, 433, 457, 481, 507, 543, 579, 597, 607, 669, 679, 691, 739, 777, 867, 903, 937, 973, 997, 1011, 1027, 1063, 1083, 1093, 1141, 1209, 1227, 1281, 1327, 1387, 1423, 1447, 1489, 1533, 1579, 1587
Offset: 1
Keywords
Examples
a(3) = 27 is a term because 27 = 3^2+3*3+3^2. a(4) = 39 is a term because 39 = 2^2+2*5+5^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Mathematics StackExchange, Largest square written as p^2+pq+q^2 where p, q are primes?
Programs
-
Maple
N:= 10^4: # for terms <= N P:= select(isprime, [2,seq(i,i=3..floor(sqrt(N)),2)]): nP:= nops(P): S:= {}: for i from 1 to nP do for j from 1 to i do x:= P[i]^2 + P[i]*P[j]+P[j]^2; if x > N then break fi; S:= S union {x}; od od: sort(convert(S,list));
Comments