cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350038 Numbers that are the perimeter of a primitive 60-degree integer triangle.

Original entry on oeis.org

18, 20, 35, 36, 45, 56, 77, 84, 90, 104, 110, 120, 126, 135, 143, 170, 176, 182, 189, 198, 209, 210, 216, 221, 252, 260, 264, 266, 270, 272, 273, 297, 299, 323, 350, 351, 360, 368, 374, 378, 380, 390, 396, 425, 432, 437, 459, 462, 464, 468, 476, 494, 495, 506, 527, 551, 561, 570, 575, 585, 594, 608, 612
Offset: 1

Views

Author

Seiichi Manyama, Dec 10 2021

Keywords

Examples

			b(n) = Sum_{k=1..3} A264826(3*n+k-3).
c(n) = Sum_{k=1..3} A201223(3*n+k-3).
b(1) = c(1) = 3+7+8 = 18 = a(1).
b(2) = c(2) = 5+7+8 = 20 = a(2).
b(3) = c(5) = 5+19+21 = 45 = a(5).
b(4) = c(3) = 7+13+15 = 35 = a(3).
b(5) = c(9) = 7+37+40 = 84 = a(8).
b(6) = c(4) = 8+13+15 = 36 = a(4).
		

Crossrefs

Programs

  • Ruby
    def A(n)
      ary = []
      (1..n).each{|i|
        (i + 1..n).each{|j|
          if i.gcd(j) == 1 && (i - j) % 3 > 0
            x, y, z = j * j, i * j, i * i
            ary << 2 * x + 5 * y + 2 * z
            ary << 3 * x + 3 * y
          end
        }
      }
      ary
    end
    p A(20).uniq.sort[0..100]