A350038 Numbers that are the perimeter of a primitive 60-degree integer triangle.
18, 20, 35, 36, 45, 56, 77, 84, 90, 104, 110, 120, 126, 135, 143, 170, 176, 182, 189, 198, 209, 210, 216, 221, 252, 260, 264, 266, 270, 272, 273, 297, 299, 323, 350, 351, 360, 368, 374, 378, 380, 390, 396, 425, 432, 437, 459, 462, 464, 468, 476, 494, 495, 506, 527, 551, 561, 570, 575, 585, 594, 608, 612
Offset: 1
Keywords
Examples
b(n) = Sum_{k=1..3} A264826(3*n+k-3). c(n) = Sum_{k=1..3} A201223(3*n+k-3). b(1) = c(1) = 3+7+8 = 18 = a(1). b(2) = c(2) = 5+7+8 = 20 = a(2). b(3) = c(5) = 5+19+21 = 45 = a(5). b(4) = c(3) = 7+13+15 = 35 = a(3). b(5) = c(9) = 7+37+40 = 84 = a(8). b(6) = c(4) = 8+13+15 = 36 = a(4).
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Ruby
def A(n) ary = [] (1..n).each{|i| (i + 1..n).each{|j| if i.gcd(j) == 1 && (i - j) % 3 > 0 x, y, z = j * j, i * j, i * i ary << 2 * x + 5 * y + 2 * z ary << 3 * x + 3 * y end } } ary end p A(20).uniq.sort[0..100]