cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A357278 Perimeters of primitive integer-sided triangles with angles A < B < C = 2*Pi/3 = 120 degrees.

Original entry on oeis.org

15, 28, 40, 66, 77, 91, 104, 126, 144, 153, 170, 187, 190, 209, 220, 228, 260, 276, 286, 299, 322, 325, 350, 345, 390, 400, 420, 435, 442, 464, 476, 493, 496, 522, 527, 544, 558, 551, 589, 608, 620, 646, 630, 665, 672, 714, 703, 740, 777, 770, 798, 814, 805
Offset: 1

Views

Author

Bernard Schott, Oct 24 2022

Keywords

Comments

This sequence lists the sums a+b+c of the triples of sides (a,b,c) of A357274.
Also, sum a+b+c of the solutions of the Diophantine equation c^2 = a^2 + a*b + b^2 with gcd(a,b) = 1 and a < b.
For miscellaneous properties, links and references, see A357274.
This sequence is not increasing. For example, a(23) = 350 for triangle with longest side = 163 while a(24) = 345 for triangle with longest side = 169.
Perimeters are in increasing order without repetition in A350045 and perimeters that appear more than once are in A350047.

Examples

			(3, 5, 7) is the smallest triple in A357274 with 7^2 = 3^2 + 3*5 + 5^2, so a(1) = 3 + 5 + 7 = 15.
		

Crossrefs

Cf. A350045 (perimeters without repetition), A350047, A357274 (triples), A357275 (smallest side), A357276 (middle side), A357277 (largest side).

Programs

  • Maple
    for c from 5 to 100 by 2 dofor a from 3 to c-2 do
    b := (-a + sqrt(4*c^2-3*a^2))/2;
    if b=floor(b) and gcd(a,b)=1 and a
    				

Formula

a(n) = A357274(n, 1) + A357274(n, 2) + A357274(n, 3).
a(n) = A357275(n) + A357276(n) + A357277(n).

A350047 Perimeters of more than one primitive 120-degree integer triangle.

Original entry on oeis.org

2730, 4080, 7590, 9044, 11704, 12180, 13020, 13485, 13920, 14880, 15810, 16100, 18870, 21090, 22755, 23370, 24752, 25172, 26445, 27060, 28380, 29670, 30315, 31020, 32430, 32890, 33810, 34545, 34580, 36660, 37950, 38038, 38220, 38955, 41340, 42476, 44520, 46046, 46110
Offset: 1

Author

Seiichi Manyama, Dec 11 2021

Keywords

Examples

			897^2 + 560^2 + 897*560 = 1273^2, 168^2 + 1235^2 + 168*1235 = 1327^2 and 897 + 560 + 1273 = 168 + 1235 + 1327 = 2730. So 2730 is a term.
38640^2 + 5291^2 + 38640*5291 = 41539^2, 23088^2 + 22715^2 + 23088*22715 = 39667^2, 10857^2 + 34040^2 + 10857*34040 = 40573^2 and 38640 + 5291 + 41539 = 23088 + 22715 + 39667 = 10857 + 34040 + 40573 = 85470. So 85470 is a term.
		

Crossrefs

Programs

  • Ruby
    def A(n)
      ary = []
      (1..n).each{|i|
        (i + 1..n).each{|j|
          if i.gcd(j) == 1 && (i - j) % 3 > 0
            ary << 2 * j * j + 3 * i * j + i * i
          end
        }
      }
      ary
    end
    p A(200).group_by(&:to_i).select{|k, v| v.size > 1}.keys.sort[0..50]
Showing 1-2 of 2 results.