A350053 a(n) = (2^(3*n + 3 + (-1)^n) - (6 + (-1)^n))/9, for n >= 1.
3, 113, 227, 7281, 14563, 466033, 932067, 29826161, 59652323, 1908874353, 3817748707, 122167958641, 244335917283, 7818749353073, 15637498706147, 500399958596721, 1000799917193443, 32025597350190193, 64051194700380387
Offset: 1
Links
- Winston de Greef, Table of n, a(n) for n = 1..1100
- Index entries for linear recurrences with constant coefficients, signature (0,65,0,-64).
Programs
-
Mathematica
a[n_] := (2^(3*n + 3 + (-1)^n) - (6 + (-1)^n))/9; Array[a, 20] (* Amiram Eldar, Jan 21 2022 *) (* or *) LinearRecurrence[{0, 65, 0, -64}, {3, 113, 227, 7281}, 20] (* Georg Fischer, Sep 30 2022 *)
-
PARI
a(n) = (2^(3*n + 3 + (-1)^n))\9 \\ Winston de Greef, Jan 28 2024
Formula
Bisection: a(2*k-1) = (2^(6*k-1) - 5)/9 = A228871(k), a(2*k) = (4^(3*k+2) - 7)/9 = A350054(k), for k >= 1.
a(n) = (2^(3*n+ 2 + b(n)) - (5 + b(n)))/9, with b(n) = 1 + (-1)^n = A010673(n-1), for n >= 1. See the name.
G.f.: Bisection: x*(3 + 32*x)/((1 - x)*(1 - 64*x)) and x*(113 - 64*x)/((1 - x)*(1 - 64*x)).
G.f.: x*(3 + 113*x + 32*x^2 - 64*x^3)/((1 - x^2)*(1 - 64*x^2)).
Comments