A198584 Odd numbers producing exactly 3 odd numbers in the Collatz (3x+1) iteration.
3, 13, 53, 113, 213, 227, 453, 853, 909, 1813, 3413, 3637, 7253, 7281, 13653, 14549, 14563, 29013, 29125, 54613, 58197, 58253, 116053, 116501, 218453, 232789, 233013, 464213, 466005, 466033, 873813, 931157, 932053, 932067, 1856853, 1864021, 1864133
Offset: 1
Examples
The Collatz iteration of 113 is 113, 340, 170, 85, 256, 128, 64, 32, 16, 8, 4, 2, 1, which shows that 113, 85, and 1 are the three odd terms.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1009
Crossrefs
Programs
-
Mathematica
Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; t = {}; Do[If[Length[Select[Collatz[n], OddQ]] == 3, AppendTo[t, n]], {n, 1, 10000, 2}]; t
-
Python
# get n-th term in sequence def isqrt(n): i=0 while(i*i<=n): i+=1 return i-1 for n in range (200): s = isqrt(3*n)//3 a = s*3 b = (a*a)//3 c = n-b d = 4*(n*3+a+(c
4*s+1)+(c>5*s+1))+5 e = isqrt(d) f = e-1-( (d-e*e) >> 1 ) r = ((((8<André Hallqvist, Jul 25 2019 -
Python
# just prints the sequence for a in range (5,100,1): for b in range(a-8+4*(a&1),0,-6): print(( ((1<André Hallqvist, Aug 14 2019
Formula
Numbers of the form (2^m*(2^n-1)/3-1)/3 where n == 2 (mod 6) if m is even and n == 4 (mod 5) if m is odd. - Charles R Greathouse IV, Sep 09 2022
a(n) = (16*2^floor(b(n)) - 2^(2*floor((b(n) - 1)/2) + 3*floor(b(n)) - 6*(floor(b(n)/2) - floor((floor(b(n))^2 + 20)/12) + n) - 2))/9 - 1/3 where b(n) = sqrt(3)*sqrt(4*n - 3). - Alan Michael Gómez Calderón, Feb 02 2025
Comments