cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350101 Numbers k such that 2*k-1 and 2*k+1 are squarefree semiprimes (A046388).

Original entry on oeis.org

17, 28, 43, 46, 47, 71, 72, 80, 92, 93, 101, 102, 107, 108, 109, 110, 118, 124, 133, 150, 151, 152, 160, 161, 164, 170, 196, 197, 206, 207, 208, 223, 226, 235, 236, 258, 259, 267, 268, 272, 276, 290, 291, 295, 317, 334, 335, 340, 343, 344, 348, 349, 361, 377, 390
Offset: 1

Views

Author

Hugo Pfoertner, Dec 14 2021

Keywords

Examples

			a(1) = 17: 2*17 - 1 = 33 = 3*11 and 2*17 + 1 = 35 = 5*7 are both in A046388.
		

Crossrefs

Cf. A046388.
Intersection of A234093 and A234096.

Programs

  • Maple
    N:= 1000: # for terms <= N
    P:= select(isprime,[seq(i,i=3..2*N/3,2)]):
    S:= NULL:
    for i from 1 to nops(P) do
      for j from 1 to i-1 while P[i]*P[j] <= 2*N+1 do S:= S,P[i]*P[j] od
    od:
    S:= {S}:
    T:= S intersect map(`-`,S,2):
    sort(convert(map(t -> (t+1)/2, T),list)); # Robert Israel, Nov 11 2022
  • Mathematica
    semiQ[n_] := FactorInteger[n][[;; , 2]] == {1, 1}; Select[Range[400], AllTrue[2*# + {-1, 1}, semiQ] &] (* Amiram Eldar, Dec 14 2021 *)
  • PARI
    a350101(limit) = {my(sp(k)=omega(k)==2&&bigomega(k)==2);forstep(k=2,2*limit,2, if(sp(k-1)&&sp(k+1),print1(k/2,", ")))};
    a350101(390)