Original entry on oeis.org
1, 3, 6, 11, 18, 28, 40, 56, 74, 96, 121, 150, 181, 218, 257, 300, 347, 399, 453, 513, 575, 643, 715, 791, 869, 955, 1044, 1137, 1234, 1337, 1442, 1555, 1670, 1791, 1916, 2045, 2178, 2320, 2464, 2612, 2764, 2924, 3086, 3256, 3428, 3606, 3790, 3978, 4168, 4368
Offset: 0
A350103
Triangle read by rows. Number of self-measuring subsets of the initial segment of the natural numbers strictly below n and cardinality k. Number of subsets S of [n] with S = distset(S) and |S| = k.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 5, 2, 1, 1, 1, 1, 1, 6, 3, 2, 1, 1, 1, 1, 1, 7, 3, 2, 1, 1, 1, 1, 1, 1, 8, 4, 2, 2, 1, 1, 1, 1, 1, 1, 9, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 11, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 0
Triangle starts:
[ 0] [1]
[ 1] [1, 1]
[ 2] [1, 1, 1]
[ 3] [1, 1, 2, 1]
[ 4] [1, 1, 3, 1, 1]
[ 5] [1, 1, 4, 2, 1, 1]
[ 6] [1, 1, 5, 2, 1, 1, 1]
[ 7] [1, 1, 6, 3, 2, 1, 1, 1]
[ 8] [1, 1, 7, 3, 2, 1, 1, 1, 1]
[ 9] [1, 1, 8, 4, 2, 2, 1, 1, 1, 1]
[10] [1, 1, 9, 4, 3, 2, 1, 1, 1, 1, 1]
[11] [1, 1, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1]
[12] [1, 1, 11, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1]
.
The first column is 1,1,... because {} = distset({}) and |{}| = 0.
The second column is 1,1,... because {0} = distset({0}) and |{0}| = 1.
The third column is n-1 because {0, j} = distset({0, j}) and |{0, j}| = 2 for j = 1..n - 1.
The main diagonal is 1,1,... because [n] = distset([n]) and |[n]| = n (these are the complete rulers A103295).
-
T := (n, k) -> ifelse(k < 2, 1, floor((n - 1) / (k - 1))):
seq(print(seq(T(n, k), k = 0..n)), n = 0..12);
-
distSet[s_] := Union[Map[Abs[Differences[#][[1]]] &, Union[Sort /@ Tuples[s, 2]]]]; T[n_, k_] := Count[Subsets[Range[0, n - 1]], ?((ds = distSet[#]) == # && Length[ds] == k &)]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Amiram Eldar, Dec 16 2021 *)
-
T(n, k) = if(k<=1, 1, (n - 1) \ (k - 1)) \\ Winston de Greef, Jan 31 2024
-
# generating and counting (slow)
def isSelfMeasuring(R):
S, L = Set([]), len(R)
R = Set([r - 1 for r in R])
for i in range(L):
for j in (0..i):
S = S.union(Set([abs(R[i] - R[i - j])]))
return R == S
def A349976row(n):
counter = [0] * (n + 1)
for S in Subsets(n):
if isSelfMeasuring(S): counter[len(S)] += 1
return counter
for n in range(10): print(A349976row(n))
A350105
Number of subsets of the initial segment of the natural numbers strictly below n which are not self-measuring. Number of subsets S of [n] with S != distset(S).
Original entry on oeis.org
0, 0, 1, 3, 9, 22, 52, 112, 238, 490, 999, 2019, 4065, 8155, 16345, 32725, 65489, 131020, 262090, 524228, 1048514, 2097084, 4194232, 8388532, 16777138, 33554346, 67108775, 134217635, 268435359, 536870809, 1073741719, 2147483535, 4294967181, 8589934471, 17179869059
Offset: 0
Showing 1-3 of 3 results.
Comments