A350121 Increasing sequence of primes p == 3 (mod 4) such that all of 2,3,5,...,prime(n) are primitive roots mod p.
3, 19, 907, 1747, 2083, 101467, 350443, 916507, 1014787, 6603283, 27068563, 45287587, 226432243, 243060283, 3946895803, 5571195667, 9259384843, 19633449763, 229012273627, 965558895907, 2793054173947, 5142304754563
Offset: 1
Examples
a(2) = 19 since 19 is the smallest prime (congruent to 3 (mod 4)) such that the first two primes (2 and 3) are primitive roots.
Crossrefs
Cf. A213052.
Programs
-
Mathematica
max=0;Do[n=Prime@i;If[Mod[n,4]==3,k=1;While[MultiplicativeOrder[Prime@k,n]==n-1,k++];If[k-1>max,Print@n;max++]],{i,10^6}] (* Giorgos Kalogeropoulos, Dec 17 2021 *)
-
PARI
N=10^10; default(primelimit, N); A=2; { forprime (p=3, N, if (p%4==3, q = 1; forprime (a=2, A, if ( znorder(Mod(a, p)) != p-1, q=0; break() ); ); if ( q, A=nextprime(A+1); print1(p, ", ") ); ); ); }
Extensions
a(19) from Daniel Suteu, Dec 20 2021
a(20)-a(21) from Paul Vanderveen, May 08 2025
Comments