A350138 Number of non-weakly alternating patterns of length n.
0, 0, 0, 2, 32, 338, 3560, 40058, 492664, 6647666, 98210192, 1581844994, 27642067000, 521491848218, 10572345303576, 229332715217954, 5301688511602448, 130152723055769810, 3381930236770946120, 92738693031618794378, 2676532576838728227352
Offset: 0
Keywords
Examples
The a(4) = 32 patterns: (1,1,2,3) (2,1,1,2) (3,1,1,2) (4,1,2,3) (1,2,2,1) (2,1,1,3) (3,1,2,3) (4,2,1,3) (1,2,3,1) (2,1,2,3) (3,1,2,4) (4,3,1,2) (1,2,3,2) (2,1,3,4) (3,2,1,1) (4,3,2,1) (1,2,3,3) (2,3,2,1) (3,2,1,2) (1,2,3,4) (2,3,3,1) (3,2,1,3) (1,2,4,3) (2,3,4,1) (3,2,1,4) (1,3,2,1) (2,4,3,1) (3,3,2,1) (1,3,3,2) (3,4,2,1) (1,3,4,2) (1,4,3,2)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
The complement is counted by A349058.
Programs
-
Mathematica
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}]; Table[Length[Select[Join@@Permutations/@allnorm[n],!whkQ[#]&&!whkQ[-#]&]],{n,0,6}]
-
PARI
R(n,k)={my(v=vector(k,i,1), u=vector(n)); for(r=1, n, if(r%2==0, my(s=v[k]); forstep(i=k, 2, -1, v[i] = s - v[i-1]); v[1] = s); for(i=2, k, v[i] += v[i-1]); u[r]=v[k]); u} seq(n)= {concat([0], vector(n,i,1) + sum(k=1, n, (vector(n,i,k^i) - 2*R(n, k))*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ) )} \\ Andrew Howroyd, Jan 13 2024
Extensions
a(9) onwards from Andrew Howroyd, Jan 13 2024
Comments