A350141 Times when clock hands are most nearly equidistant - expressed exactly as a(n)*43200/1427 seconds after 00:00:00.
43, 86, 172, 217, 303, 346, 432, 475, 563, 606, 692, 735, 821, 864, 952, 995, 1081, 1124, 1210, 1255, 1341, 1384
Offset: 1
Examples
For n = 6, we have k = 8, m = floor(11416/33) = 345, a(6) = 346. This corresponds to a midpoint time of 346*43200/1427 seconds after 00:00:00, which is a clock time 02:54:34.562018220042046... Comparison of solutions according to the four definitions: --------------------- --------------------------- ---------------- DEFINITION Conventional Clock Times 12-hour Cycles --------------------- --------------------------- ---------------- (#1) Midpoint 02:54:34.562018220042046... 346/1427 (#2) Largest triangle 02:54:34.561690797181984... (no closed form) (#3) Least squares 02:54:34.561691213006188... 246915/1018346 (#4) Least variances 02:54:34.547983310152990... 523/2157 --------------------- --------------------------- ----------------
Links
- Henry Ernest Dudeney, Amusements in Mathematics, London, New York, Nelson, 1917. (Problem #63: The Stop-Watch)
Programs
-
Maple
a := proc(n) n + iquo(n - 1, 2): iquo(1427 * %, 33): % + irem(% - %%, 2) end: # Peter Luschny, Dec 17 2021
-
Mathematica
a[n_] := Module[{k = n + Floor[(n - 1)/2], m}, m = Floor[1427*k/33]; If[EvenQ[m - k], m, m + 1]]; Array[a, 22] (* Amiram Eldar, Dec 16 2021 *)
Formula
a(n) = m + mod(m - k, 2) where k = n + floor((n-1)/2) and m = floor(k*1427/33).
Comments