cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350146 Partial sums of A002131.

Original entry on oeis.org

1, 3, 7, 11, 17, 25, 33, 41, 54, 66, 78, 94, 108, 124, 148, 164, 182, 208, 228, 252, 284, 308, 332, 364, 395, 423, 463, 495, 525, 573, 605, 637, 685, 721, 769, 821, 859, 899, 955, 1003, 1045, 1109, 1153, 1201, 1279, 1327, 1375, 1439, 1496, 1558, 1630, 1686, 1740, 1820
Offset: 1

Views

Author

Seiichi Manyama, Dec 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[2, e_] := 2^e; f[p_, e_] := (p^(e + 1) - 1)/(p - 1); s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate @ Array[s, 50] (* Amiram Eldar, Dec 17 2021 *)
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, k/d%2*d));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, k*x^k/(1-x^(2*k)))/(1-x))
    
  • Python
    def A350146(n): return sum(k*(n//k) for k in range(1,n+1))-sum(k*(n//2//k) for k in range(1,n//2+1)) # Chai Wah Wu, Dec 17 2021
    
  • Python
    from math import isqrt
    def A350146(n): return (-(s:=isqrt(n))**2*(s+1) + sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))+(t:=isqrt(m:=n>>1))**2*(t+1) - sum((q:=m//k)*((k<<1)+q+1) for k in range(1,t+1)))>>1 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = Sum_{k=1..n} Sum_{d|k, k/d odd} d = Sum_{k=1..n} A002131(k).
G.f.: (1/(1 - x)) * Sum_{k>=1} k * x^k/(1 - x^(2*k)).
a(n) ~ (Pi^2/16) * n^2. - Amiram Eldar, Dec 17 2021
a(n) = A024916(n) - A024916(floor(n/2)). - Chai Wah Wu, Dec 17 2021