A350146 Partial sums of A002131.
1, 3, 7, 11, 17, 25, 33, 41, 54, 66, 78, 94, 108, 124, 148, 164, 182, 208, 228, 252, 284, 308, 332, 364, 395, 423, 463, 495, 525, 573, 605, 637, 685, 721, 769, 821, 859, 899, 955, 1003, 1045, 1109, 1153, 1201, 1279, 1327, 1375, 1439, 1496, 1558, 1630, 1686, 1740, 1820
Offset: 1
Keywords
Programs
-
Mathematica
f[2, e_] := 2^e; f[p_, e_] := (p^(e + 1) - 1)/(p - 1); s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate @ Array[s, 50] (* Amiram Eldar, Dec 17 2021 *)
-
PARI
a(n) = sum(k=1, n, sumdiv(k, d, k/d%2*d));
-
PARI
my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, k*x^k/(1-x^(2*k)))/(1-x))
-
Python
def A350146(n): return sum(k*(n//k) for k in range(1,n+1))-sum(k*(n//2//k) for k in range(1,n//2+1)) # Chai Wah Wu, Dec 17 2021
-
Python
from math import isqrt def A350146(n): return (-(s:=isqrt(n))**2*(s+1) + sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))+(t:=isqrt(m:=n>>1))**2*(t+1) - sum((q:=m//k)*((k<<1)+q+1) for k in range(1,t+1)))>>1 # Chai Wah Wu, Oct 21 2023
Formula
a(n) = Sum_{k=1..n} Sum_{d|k, k/d odd} d = Sum_{k=1..n} A002131(k).
G.f.: (1/(1 - x)) * Sum_{k>=1} k * x^k/(1 - x^(2*k)).
a(n) ~ (Pi^2/16) * n^2. - Amiram Eldar, Dec 17 2021