A350154 a(n) = denominator(k^n * [x^(2*n+1)] sqrt(k)*arccos(exp(-x^2/(2*k)))) for n >= 0 and fixed k > 0.
1, 12, 480, 2688, 92160, 4055040, 805109760, 148635648, 2021444812800, 9037047398400, 41855798476800, 85571854663680, 1218840851644416000, 131634811977596928000, 30539276378802487296000, 26116346696355230515200, 72745993870031978496000, 8332722934203662991360000
Offset: 0
Examples
x(k) = x - (1/12)*(x^3/k) + (1/480)*(x^5/k^2) + (1/2688)*(x^7/k^3) - (1/92160)*(x^9/k^4) - (19/4055040)*(x^11/k^5) + (79/805109760)*(x^13/k^6) ...
Links
- David Broadhurst, Relations between A241885/A242225, A222411/A222412, and A350194/A350154.
Programs
-
Maple
gf := sqrt(k)*arccos(exp(-x^2/(2*k))): assume(k > 0): assume(x > 0): ser := series(gf, x, 80): seq(denom(k^n*coeff(ser, x, 2*n+1)), n=0..17); # Peter Luschny, Dec 19 2021
Formula
The definitions of G(x) and C(x,k) lead directly to the equation
x(k) = sqrt(k)*arccos(exp(-x^2/(2k))),
which can be expanded into the power series
x(k) = Sum_{n>=0} (x^(2n+1)/k^n) * (A350194(n)/a(n)).
Comments