cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350154 a(n) = denominator(k^n * [x^(2*n+1)] sqrt(k)*arccos(exp(-x^2/(2*k)))) for n >= 0 and fixed k > 0.

Original entry on oeis.org

1, 12, 480, 2688, 92160, 4055040, 805109760, 148635648, 2021444812800, 9037047398400, 41855798476800, 85571854663680, 1218840851644416000, 131634811977596928000, 30539276378802487296000, 26116346696355230515200, 72745993870031978496000, 8332722934203662991360000
Offset: 0

Views

Author

Robert B Fowler, Dec 16 2021

Keywords

Comments

Denominators of a power series characterizing how powers of the cosine function converge to the Gaussian function.
As the cosine function is raised to increasing powers k, it converges to the Gaussian normal function. Let x be the standard deviation argument of the Gaussian function, and define a suitably scaled cosine function.
G(x) = exp(-x^2/2), Gaussian function.
C(x,k) = (cos(x/sqrt(k)))^k, k-th power of cosine function
C(x,k) - G(x) = -x^4/(12k) + x^6/(24k) - x^6/(45x^2) + ...
The usefulness of this approximation lies within the "principal half-period" of C(x,k), defined as h_k = {x : abs(x) < sqrt(k)*Pi/2}. Within h_k, k can be any real number and C(x,k) is a good approximation to G(x) even for small k, although convergence to G(x) is only reciprocal in k. Outside h_k, negative cosine values occur and the approximation deteriorates.
If we define x(k) such that G(x) = C(x(k),k) then
x = lim_{k->infinity} x(k).
The value of x(k) can be expressed as a polynomial in integer powers of x and k and coefficients A350194(n)/a(n), and characterizes how closely cosine powers approximate and converge to the Gaussian function.

Examples

			x(k) = x - (1/12)*(x^3/k) + (1/480)*(x^5/k^2) + (1/2688)*(x^7/k^3) - (1/92160)*(x^9/k^4) - (19/4055040)*(x^11/k^5) + (79/805109760)*(x^13/k^6) ...
		

Crossrefs

Programs

  • Maple
    gf := sqrt(k)*arccos(exp(-x^2/(2*k))): assume(k > 0): assume(x > 0):
    ser := series(gf, x, 80): seq(denom(k^n*coeff(ser, x, 2*n+1)), n=0..17); # Peter Luschny, Dec 19 2021

Formula

The definitions of G(x) and C(x,k) lead directly to the equation
x(k) = sqrt(k)*arccos(exp(-x^2/(2k))),
which can be expanded into the power series
x(k) = Sum_{n>=0} (x^(2n+1)/k^n) * (A350194(n)/a(n)).
Theorem: A241885(n)/A242225(n) = n!*A222411(n)/(A222412(n)*(-1)^n/(1-2*n)) = n!*A350194(n)/(A350154(n)*(2*n+1)). - David Broadhurst, Apr 23 2022 (see Link).