A350174 For k = 0, 1, 2, 3, ... write k prime(k+1) times.
0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Offset: 0
References
- J.-P. Delahaye, Des suites fractales d’entiers, Pour la Science, No. 531 January 2022. Sequence g) p. 82.
Programs
-
Maple
a:=[]; for n from 0 to 10 do a:=[op(a), seq(n,i=1..ithprime(n+1))]; od: a; # N. J. A. Sloane, Dec 18 2021
-
Python
from itertools import count, islice, chain from sympy import prime def A350174gen(): return chain.from_iterable([k]*prime(k+1) for k in count(0)) A350174_list = list(islice(A350174gen(),50)) # Chai Wah Wu, Dec 19 2021
Formula
a(n) = A083375(n+1) - 1. - Peter Munn, May 26 2023
Comments