A350175 Sum of the distinct block sizes over all partitions of [n].
0, 1, 3, 13, 45, 196, 888, 4383, 22879, 129163, 768913, 4849912, 32202712, 224672241, 1640679589, 12517008985, 99484656169, 822410210044, 7055883373604, 62730142658947, 576984726864147, 5482889832932123, 53757450049841167, 543169144098559606, 5649499728403949184
Offset: 0
Keywords
Examples
a(3) = 13 = 1*3 + 3*(1+2) + 1: 123, 1|23, 13|2, 12|3, 1|2|3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, i, c) option remember; `if`(n=0, c, `if`(i<1, 0, add(b(n-j*i, i-1, c+i*signum(j))* combinat[multinomial](n, n-i*j, i$j)/j!, j=0..n/i))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..30);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, c_] := b[n, i, c] = If[n == 0, c, If[i < 1, 0, Sum[b[n - j*i, i - 1, c + i*Sign[j]]* multinomial[n, Join[{n - i*j}, Table[i, {j}]]]/j!, {j, 0, n/i}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 11 2022, after Alois P. Heinz *)
Formula
a(n) mod 2 = A131719(n).