A350181 Numbers of multiplicative persistence 2 which are themselves the product of digits of a number.
25, 27, 28, 35, 36, 45, 48, 54, 56, 63, 64, 72, 84, 125, 126, 128, 135, 144, 162, 192, 216, 224, 225, 243, 245, 252, 256, 315, 324, 375, 432, 441, 512, 525, 567, 576, 588, 625, 675, 735, 756, 875, 945, 1125, 1134, 1152, 1176, 1215, 1225, 1296, 1323, 1372
Offset: 1
Examples
25 is in this sequence because: - 25 goes to a single digit in 2 steps: p(25) = 10, p(10) = 0. - 25 has ancestors 55, 155, etc. p(55) = 25. 27 is in this sequence because: - 27 goes to a single digit in 2 steps: p(27) = 14, p(14) = 4. - 27 has ancestors 39, 93, 333, 139, etc. p(39) = 27.
Links
- Daniel Mondot, Table of n, a(n) for n = 1..11994
Crossrefs
Programs
-
Mathematica
Select[Range@1400,AllTrue[First/@FactorInteger@#,#<10&]&&Length@Most@NestWhileList[Times@@IntegerDigits@#&,#,#>9&]==2&] (* Giorgos Kalogeropoulos, Jan 16 2022 *)
-
Python
from math import prod from sympy import factorint def pd(n): return prod(map(int, str(n))) def ok(n): if n <= 9 or max(factorint(n)) > 9: return False return (p := pd(n)) > 9 and pd(p) < 10 print([k for k in range(1400) if ok(k)]) # Michael S. Branicky, Jan 16 2022
Comments