A350180
Numbers of multiplicative persistence 1 which are themselves the product of digits of a number.
Original entry on oeis.org
10, 12, 14, 15, 16, 18, 20, 21, 24, 30, 32, 40, 42, 50, 60, 70, 80, 81, 90, 100, 105, 108, 112, 120, 140, 150, 160, 180, 200, 210, 240, 250, 270, 280, 300, 320, 350, 360, 400, 405, 420, 450, 480, 490, 500, 504, 540, 560, 600, 630, 640, 700, 720, 750, 800
Offset: 1
10 is in this sequence because:
- 10 goes to a single digit in 1 step: p(10) = 0.
- 25, 52, 125, 152, 215, 512, 251, 521, 1125, 1152, 1215, 1512, 1251, 1521, 2115, 5112, 2511, 5211, etc. all lead to 10, i.e., p(25)=10, p(52)=10, etc.
Some of these (25, 125, 512, 1125, 1152, 1215, 1512) are in the next layer of classes, A350181, and the rest are not.
12 is in this sequence because:
- 12 goes to a single digit in 1 step: p(12) = 2.
- 12, 21, 112, 211, 121, 11112, 11211, etc. all lead to 12.
(12, 21 and 112 are in the next layer of classes, A350181, but the rest are not)
14 is in this sequence because:
- 14 goes to a single digit in 1 step: p(14) = 4.
- 27, 72, 127, 172, 217, 712, 271, 721, 12111711, etc. all lead to 14.
(27 and 72 are in the next layer of classes, A350181, the rest are not).
Cf.
A003001 (smallest number with multiplicative persistence n),
A031346 (multiplicative persistence),
A031347 (multiplicative digital root),
A046510 (all numbers with mp of 1).
-
mp(n)={my(k=0); while(n>=10, k++; n=vecprod(digits(n))); k}
isparent(n)={my(m=0); while(m<>n, m=n; n/=gcd(n,2*3*5*7)); n==1}
isok(n)={mp(n)==1 && isparent(n)} \\ Andrew Howroyd, Dec 20 2021
A350182
Numbers of multiplicative persistence 3 which are themselves the product of digits of a number.
Original entry on oeis.org
49, 75, 96, 98, 147, 168, 175, 189, 196, 288, 294, 336, 343, 392, 448, 486, 648, 672, 729, 784, 864, 882, 896, 972, 1344, 1715, 1792, 1944, 2268, 2744, 3136, 3375, 3888, 3969, 7938, 8192, 9375, 11664, 12288, 12348, 13824, 14336, 16384, 16464, 17496, 18144
Offset: 1
49 is in this sequence because:
- 49 goes to a single digit in 3 steps: p(49) = 36, p(36) = 18, p(18) = 8.
- p(77) = p(177) = p(717) = p(771) = 49, etc.
75 is in this sequence because:
- 75 goes to a single digit in 3 steps: p(75) = 35, p(35) = 15, p(15) = 5.
- p(355) = p(535) = p(1553) = 75, etc.
Cf.
A002473,
A003001 (smallest number with multiplicative persistence n),
A031346 (multiplicative persistence),
A031347 (multiplicative digital root),
A046512 (all numbers with mp of 3).
A350183
Numbers of multiplicative persistence 4 which are themselves the product of digits of a number.
Original entry on oeis.org
378, 384, 686, 768, 1575, 1764, 2646, 4374, 6144, 6174, 6272, 7168, 8232, 8748, 16128, 21168, 23328, 27216, 28672, 32928, 34992, 49392, 59535, 67228, 77175, 96768, 112896, 139968, 148176, 163296, 214326, 236196, 393216, 642978, 691488, 774144, 777924
Offset: 1
384 is in this sequence because:
- 384 goes to a single digit in 4 steps: p(384)=96, p(96)=54, p(54)=20, p(20)=0.
- p(886)=384, p(6248)=384, p(18816)=384, etc.
378 is in this sequence because:
- 378 goes to a single digits in 4 steps: p(378)=168, p(168)=48, p(48)=32, p(32)=6.
- p(679)=378, p(2397)=378, p(12379)=378, etc.
Cf.
A002473 (7-smooth),
A003001 (smallest number with multiplicative persistence n),
A031346 (multiplicative persistence),
A031347 (multiplicative digital root),
A046513 (all numbers with mp of 4).
-
mx=10^6;lst=Sort@Flatten@Table[2^i*3^j*5^k*7^l,{i,0,Log[2,mx]},{j,0,Log[3,mx/2^i]},{k,0,Log[5,mx/(2^i*3^j)]},{l,0,Log[7,mx/(2^i*3^j*5^k)]}]; (* from A002473 *)
Select[lst,Length@Most@NestWhileList[Times@@IntegerDigits@#&,#,#>9&]==4&] (* Giorgos Kalogeropoulos, Jan 16 2022 *)
-
pd(n) = if (n, vecprod(digits(n)), 0); \\ A007954
mp(n) = my(k=n, i=0); while(#Str(k) > 1, k=pd(k); i++); i; \\ A031346
isok(k) = (mp(k)==4) && (vecmax(factor(k)[,1]) <= 7); \\ Michel Marcus, Jan 25 2022
-
from math import prod
from sympy import factorint
def pd(n): return prod(map(int, str(n)))
def ok(n):
if n <= 9 or max(factorint(n)) > 9: return False
return (p := pd(n)) > 9 and (q := pd(p)) > 9 and (r := pd(q)) > 9 and pd(r) < 10
print([k for k in range(778000) if ok(k)])
A350184
Numbers of multiplicative persistence 5 which are themselves the product of digits of a number.
Original entry on oeis.org
2688, 18816, 26244, 98784, 222264, 262144, 331776, 333396, 666792, 688128, 1769472, 2939328, 3687936, 4214784, 4917248, 13226976, 19361664, 38118276, 71663616, 111476736, 133413966, 161414428, 169869312, 184473632, 267846264, 368947264, 476171136, 1783627776
Offset: 1
2688 is in this sequence because:
- 2688 goes to a single digit in 5 steps: p(2688)=768, p(768)=336, p(336)=54, p(54)=20, p(20)=0.
- p(27648) = p(47628) = 2688, etc.
331776 is in this sequence because:
- 331776 goes to a single digit in 5 steps: p(331776)=2646, p(2646)=288, p(288)=128, p(128)=16, p(16)=6.
- p(914838624) = p(888899) = 331776, etc.
Cf.
A003001 (smallest number with multiplicative persistence n),
A031346 (multiplicative persistence),
A031347 (multiplicative digital root).
-
mx=10^10;lst=Sort@Flatten@Table[2^i*3^j*5^k*7^l,{i,0,Log[2,mx]},{j,0,Log[3,mx/2^i]},{k,0,Log[5,mx/(2^i*3^j)]},{l,0,Log[7,mx/(2^i*3^j*5^k)]}];
Select[lst,Length@Most@NestWhileList[Times@@IntegerDigits@#&,#,#>9&]==5&] (* code for 7-smooth numbers from A002473. - Giorgos Kalogeropoulos, Jan 16 2022 *)
-
from math import prod
def hd(n):
while (n&1) == 0: n >>= 1
while (n%3) == 0: n /= 3
while (n%5) == 0: n /= 5
while (n%7) == 0: n /= 7
return(n)
def pd(n): return prod(map(int, str(n)))
def ok(n):
if hd(n) > 9: return False
return (p := pd(n)) > 9 and (q := pd(p)) > 9 and (r := pd(q)) > 9 and (s := pd(r)) > 9 and pd(s) < 10
print([k for k in range(10,476200000) if ok(k)])
A350185
Numbers of multiplicative persistence 6 which are themselves the product of digits of a number.
Original entry on oeis.org
27648, 47628, 64827, 84672, 134217728, 914838624, 1792336896, 3699376128, 48814981614, 134481277728, 147483721728, 1438916737499136
Offset: 1
27648 is in sequence because:
- 27648 goes to a single digit in 6 steps: p(27648)=2688, p(2688)=768, p(768)=336, p(336)=54, p(54)=20, p(20)=0.
- p(338688) = p(168889) = 27648, etc.
Cf.
A002473,
A003001 (smallest number with multiplicative persistence n),
A031346 (multiplicative persistence),
A031347 (multiplicative digital root),
A046515 (all numbers with mp of 6).
-
mx=10^16;lst=Sort@Flatten@Table[2^i*3^j*5^k*7^l,{i,0,Log[2,mx]},{j,0,Log[3,mx/2^i]},{k,0,Log[5,mx/(2^i*3^j)]},{l,0,Log[7,mx/(2^i*3^j*5^k)]}];
Select[lst,Length@Most@NestWhileList[Times@@IntegerDigits@#&,#,#>9&]==6&] (* code for 7-smooth numbers from A002473. - Giorgos Kalogeropoulos, Jan 16 2022 *)
-
#this program may take 91 minutes to produce the first 8 members.
from math import prod
def hd(n):
while (n&1) == 0: n >>= 1
while (n%3) == 0: n /= 3
while (n%5) == 0: n /= 5
while (n%7) == 0: n /= 7
return(n)
def pd(n): return prod(map(int, str(n)))
def ok(n):
if hd(n) > 9: return False
return (p := pd(n)) > 9 and (q := pd(p)) > 9 and (r := pd(q)) > 9 and (s := pd(r)) > 9 and (t := pd(s)) > 9 and pd(t) < 10
print([k for k in range(10,3700000000) if ok(k)])
A350187
Numbers of multiplicative persistence 8 which are themselves the product of digits of a number.
Original entry on oeis.org
4478976, 784147392, 19421724672, 249143169618, 717233481216
Offset: 1
4478976 is in this sequence because:
- 4478976 goes to a single digit in 8 steps: 4478976 -> 338688 -> 27648 -> 2688 -> 768 -> 336 -> 54 -> 20 -> 0;
- p(438939648) = p(231928233984) = 4478976.
Cf.
A003001 (smallest number with multiplicative persistence n),
A031346 (multiplicative persistence),
A031347 (multiplicative digital root),
A046517 (all numbers with mp of 8).
A350186
Numbers of multiplicative persistence 7 which are themselves the product of digits of a number.
Original entry on oeis.org
338688, 826686, 2239488, 3188646, 6613488, 14224896, 3416267673274176, 6499837226778624
Offset: 1
338688 is in this sequence because:
- 338688 goes to a single digit in 7 steps: p(338688) = 27648, p(27648) = 2688, p(2688)=768, p(768)=336, p(336)=54, p(54)=20, p(20)=0.
- p(4478976) = p(13477889) = 338688, etc.
Cf.
A002473,
A003001 (smallest number with multiplicative persistence n),
A031346 (multiplicative persistence),
A031347 (multiplicative digital root),
A046516 (all numbers with mp of 7).
-
mx=10^16;lst=Sort@Flatten@Table[2^i*3^j*5^k*7^l,{i,0,Log[2,mx]},{j,0,Log[3,mx/2^i]},{k,0,Log[5,mx/(2^i*3^j)]},{l,0,Log[7,mx/(2^i*3^j*5^k)]}];
Select[lst,Length@Most@NestWhileList[Times@@IntegerDigits@#&,#,#>9&]==7&] (* code for 7-smooth numbers from A002473. - Giorgos Kalogeropoulos, Jan 16 2022 *)
Showing 1-7 of 7 results.
Comments