cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350183 Numbers of multiplicative persistence 4 which are themselves the product of digits of a number.

Original entry on oeis.org

378, 384, 686, 768, 1575, 1764, 2646, 4374, 6144, 6174, 6272, 7168, 8232, 8748, 16128, 21168, 23328, 27216, 28672, 32928, 34992, 49392, 59535, 67228, 77175, 96768, 112896, 139968, 148176, 163296, 214326, 236196, 393216, 642978, 691488, 774144, 777924
Offset: 1

Views

Author

Daniel Mondot, Dec 18 2021

Keywords

Comments

The multiplicative persistence of a number mp(n) is the number of times the product-of-digits function p(n) must be applied to reach a single digit, i.e., A031346(n).
The product-of-digits function partitions all numbers into equivalence classes. There is a one-to-one correspondence between values in this sequence and equivalence classes of numbers with multiplicative persistence 5.
There are infinitely many numbers with mp of 1 to 11, but the classes of numbers (p(n)) are postulated to be finite for sequences A350181....
Equivalently:
- This sequence lists all numbers A007954(k) such that A031346(k) = 5.
- These are the numbers k in A002473 such that A031346(k) = 4.
Or:
- These numbers factor into powers of 2, 3, 5 and 7 exclusively.
- p(n) goes to a single digit in 4 steps.
Postulated to be finite and complete.

Examples

			384 is in this sequence because:
- 384 goes to a single digit in 4 steps: p(384)=96, p(96)=54, p(54)=20, p(20)=0.
- p(886)=384, p(6248)=384, p(18816)=384, etc.
378 is in this sequence because:
- 378 goes to a single digits in 4 steps: p(378)=168, p(168)=48, p(48)=32, p(32)=6.
- p(679)=378, p(2397)=378, p(12379)=378, etc.
		

Crossrefs

Cf. A002473 (7-smooth), A003001 (smallest number with multiplicative persistence n), A031346 (multiplicative persistence), A031347 (multiplicative digital root), A046513 (all numbers with mp of 4).
Cf. A350180, A350181, A350182, A350184, A350185, A350186, A350187 (numbers with mp 1 to 3 and 5 to 10 that are themselves 7-smooth numbers).

Programs

  • Mathematica
    mx=10^6;lst=Sort@Flatten@Table[2^i*3^j*5^k*7^l,{i,0,Log[2,mx]},{j,0,Log[3,mx/2^i]},{k,0,Log[5,mx/(2^i*3^j)]},{l,0,Log[7,mx/(2^i*3^j*5^k)]}]; (* from A002473 *)
    Select[lst,Length@Most@NestWhileList[Times@@IntegerDigits@#&,#,#>9&]==4&] (* Giorgos Kalogeropoulos, Jan 16 2022 *)
  • PARI
    pd(n) = if (n, vecprod(digits(n)), 0); \\ A007954
    mp(n) = my(k=n, i=0); while(#Str(k) > 1, k=pd(k); i++); i; \\ A031346
    isok(k) = (mp(k)==4) && (vecmax(factor(k)[,1]) <= 7); \\ Michel Marcus, Jan 25 2022
  • Python
    from math import prod
    from sympy import factorint
    def pd(n): return prod(map(int, str(n)))
    def ok(n):
        if n <= 9 or max(factorint(n)) > 9: return False
        return (p := pd(n)) > 9 and (q := pd(p)) > 9 and (r := pd(q)) > 9 and pd(r) < 10
    print([k for k in range(778000) if ok(k)])