cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350184 Numbers of multiplicative persistence 5 which are themselves the product of digits of a number.

Original entry on oeis.org

2688, 18816, 26244, 98784, 222264, 262144, 331776, 333396, 666792, 688128, 1769472, 2939328, 3687936, 4214784, 4917248, 13226976, 19361664, 38118276, 71663616, 111476736, 133413966, 161414428, 169869312, 184473632, 267846264, 368947264, 476171136, 1783627776
Offset: 1

Views

Author

Daniel Mondot, Dec 18 2021

Keywords

Comments

The multiplicative persistence of a number mp(n) is the number of times the product of digits function p(n) must be applied to reach a single digit, i.e., A031346(n).
The product of digits function partitions all numbers into equivalence classes. There is a one-to-one correspondence between values in this sequence and equivalence classes of numbers with multiplicative persistence 5.
There are infinitely many numbers with mp of 1 to 11, but the classes of numbers (p(n)) are postulated to be finite for sequences A350181....
Equivalently:
This sequence consists of all numbers A007954(k) such that A031346(k) = 6.
These are the numbers k in A002473 such that A031346(k) = 5.
Or:
- they factor into powers of 2, 3, 5 and 7 exclusively.
- p(n) goes to a single digit in 5 steps.
Postulated to be finite and complete.

Examples

			2688 is in this sequence because:
- 2688 goes to a single digit in 5 steps: p(2688)=768, p(768)=336, p(336)=54, p(54)=20, p(20)=0.
- p(27648) = p(47628) = 2688, etc.
331776 is in this sequence because:
- 331776 goes to a single digit in 5 steps: p(331776)=2646, p(2646)=288, p(288)=128, p(128)=16, p(16)=6.
- p(914838624) = p(888899) = 331776, etc.
		

Crossrefs

Intersection of A002473 and A046514 (all numbers with mp of 5).
Cf. A003001 (smallest number with multiplicative persistence n), A031346 (multiplicative persistence), A031347 (multiplicative digital root).
Cf. A350180, A350181, A350182, A350183, A350185, A350186, A350187 (numbers with mp 1 to 4 and 6 to 10 that are themselves 7-smooth numbers).

Programs

  • Mathematica
    mx=10^10;lst=Sort@Flatten@Table[2^i*3^j*5^k*7^l,{i,0,Log[2,mx]},{j,0,Log[3,mx/2^i]},{k,0,Log[5,mx/(2^i*3^j)]},{l,0,Log[7,mx/(2^i*3^j*5^k)]}];
    Select[lst,Length@Most@NestWhileList[Times@@IntegerDigits@#&,#,#>9&]==5&] (* code for 7-smooth numbers from A002473. - Giorgos Kalogeropoulos, Jan 16 2022 *)
  • Python
    from math import prod
    def hd(n):
        while (n&1) == 0:  n >>= 1
        while (n%3) == 0:  n /= 3
        while (n%5) == 0:  n /= 5
        while (n%7) == 0:  n /= 7
        return(n)
    def pd(n): return prod(map(int, str(n)))
    def ok(n):
        if hd(n) > 9: return False
        return (p := pd(n)) > 9 and (q := pd(p)) > 9 and (r := pd(q)) > 9 and (s := pd(r)) > 9 and pd(s) < 10
    print([k for k in range(10,476200000) if ok(k)])