A350189 Triangle T(n,k) read by rows: the number of symmetric binary n X n matrices with k ones and no all-1 2 X 2 submatrix.
1, 1, 1, 1, 2, 2, 2, 1, 3, 6, 10, 9, 9, 4, 1, 4, 12, 28, 46, 72, 80, 80, 60, 16, 1, 5, 20, 60, 140, 296, 500, 780, 1005, 1085, 992, 560, 170, 1, 6, 30, 110, 330, 876, 1956, 4020, 7140, 11480, 16248, 19608, 20560, 16500, 9720, 3276, 360, 1, 7, 42, 182, 665, 2121, 5852, 14792, 33117, 68355, 126994, 214158
Offset: 0
Examples
The triangle starts 1; 1 1; 1 2 2 2; 1 3 6 10 9 9 4; 1 4 12 28 46 72 80 80 60 16; 1 5 20 60 140 296 500 780 1005 1085 992 560 170; ... To place 4 ones, one can place 2 of them in C(n,2) ways on the diagonal and the other 2 in n*(n-1)/2 ways outside the diagonal, avoiding one matrix that builds an all-1 submatrix, which are C(n,2)*(n*(n-1)/2-1) matrices. One can place all 4 on the diagonal in C(n,4) ways. One can place 2 outside the diagonal (the other 2 mirror symmetrically) in C(n*(n-1)/2,2) ways. Sum of the 3 terms is T(n,4) = C(n,3)*(5*n+3)/2. - _R. J. Mathar_, Mar 10 2022
Links
- Max Alekseyev, Table of n, a(n) for n = 0..361 (rows 0..14; rows 0..9 from R. J. Mathar)
- P. Erdos and D. Kleitman, On collections of subsets containing no 4-member boolean algebra, Proc. Am. Math. Soc. 28 (1) (1971) 87.
- R. J. Mathar, Illustration of graphs with these incidence matrices
- Index entries for sequences of binary matrices
- Index entries for sequences of squarefree graphs
Crossrefs
Formula
T(n,0) = 1.
T(n,1) = n.
T(n,2) = A002378(n-1).
T(n,3) = A006331(n-1).
T(n,5) = n*(n-1)*(n-2)*(13*n^2-n-24)/60. T(n,6) = n*(n-1)*(n-2)*(19*n^3-18*n^2-97*n+60)/180. T(n,7) = n*(n-1)*(n-2)*(n-3)*(58*n^3+75*n^2-223*n+180)/1260. - Conjectured by R. J. Mathar, Mar 11 2022; proved by Max Alekseyev, Apr 02 2022
G.f.: F(x,y) = Sum_{n,k} T(n,k)*x^n/n!*y^k = exp( Sum_G x^n(G) * y^u(G) / |Aut(G)| ), where G runs over the connected squarefree graphs with loops, n(G) is the number of nodes in G, u(G) the number of ones in the adjacency matrix of G, and Aut(G) is the automorphism group of G. It follows that F(x,y) = exp(x) * (1 + x*y + x^2*y^2 + (2/3*x^3 + x^2)*y^3 + (5/12*x^4 + 3/2*x^3)*y^4 + (13/60*x^5 + 3/2*x^4 + 3/2*x^3)*y^5 + (19/180*x^6 + 7/6*x^5 + 8/3*x^4 + 2/3*x^3)*y^6 + (29/630*x^7 + 3/4*x^6 + 19/6*x^5 + 10/3*x^4)*y^7 + O(y^8)), implying the above formulas for T(n,k). - Max Alekseyev, Apr 02 2022
Conjecture: the largest k such that T(n,k) is nonzero is k = A072567(n) = A001197(n) - 1. - Max Alekseyev, Apr 03 2022
Comments