cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350202 Number T(n,k) of nodes in the k-th connected component of all endofunctions on [n] when components are ordered by increasing size; triangle T(n,k), n>=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 7, 1, 61, 19, 1, 709, 277, 37, 1, 9911, 4841, 811, 61, 1, 167111, 91151, 19706, 1876, 91, 1, 3237921, 1976570, 486214, 60229, 3739, 127, 1, 71850913, 47203241, 13110749, 1892997, 152937, 6721, 169, 1, 1780353439, 1257567127, 380291461, 62248939, 5971291, 340729, 11197, 217, 1
Offset: 1

Views

Author

Alois P. Heinz, Dec 19 2021

Keywords

Examples

			Triangle T(n,k) begins:
         1;
         7,        1;
        61,       19,        1;
       709,      277,       37,       1;
      9911,     4841,      811,      61,      1;
    167111,    91151,    19706,    1876,     91,    1;
   3237921,  1976570,   486214,   60229,   3739,  127,   1;
  71850913, 47203241, 13110749, 1892997, 152937, 6721, 169, 1;
  ...
		

Crossrefs

Column k=1 gives A350157.
Row sums give A007778.
T(n+1,n) gives A003215 for n>=1.

Programs

  • Maple
    g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
    b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
          add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(g(i)^j*
            b(n-i*j, i+1, max(0, t-j))/j!*combinat[multinomial]
             (n, i$j, n-i*j)), j=0..n/i)))
        end:
    T:= (n, k)-> b(n, 1, k)[2]:
    seq(seq(T(n, k), k=1..n), n=1..10);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0}, If[i > n, {0, 0}, Sum[ Function[p, p + If[t > 0 && t - j < 1, {0, p[[1]]*i}, {0, 0}]][g[i]^j*b[n - i*j, i + 1, Max[0, t - j]]/j!*multinomial[n, Append[Table[i, {j}], n - i*j]]], {j, 0, n/i}]]];
    T[n_, k_] := b[n, 1, k][[2]];
    Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)