A350202 Number T(n,k) of nodes in the k-th connected component of all endofunctions on [n] when components are ordered by increasing size; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
1, 7, 1, 61, 19, 1, 709, 277, 37, 1, 9911, 4841, 811, 61, 1, 167111, 91151, 19706, 1876, 91, 1, 3237921, 1976570, 486214, 60229, 3739, 127, 1, 71850913, 47203241, 13110749, 1892997, 152937, 6721, 169, 1, 1780353439, 1257567127, 380291461, 62248939, 5971291, 340729, 11197, 217, 1
Offset: 1
Examples
Triangle T(n,k) begins: 1; 7, 1; 61, 19, 1; 709, 277, 37, 1; 9911, 4841, 811, 61, 1; 167111, 91151, 19706, 1876, 91, 1; 3237921, 1976570, 486214, 60229, 3739, 127, 1; 71850913, 47203241, 13110749, 1892997, 152937, 6721, 169, 1; ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Crossrefs
Programs
-
Maple
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end: b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0, add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(g(i)^j* b(n-i*j, i+1, max(0, t-j))/j!*combinat[multinomial] (n, i$j, n-i*j)), j=0..n/i))) end: T:= (n, k)-> b(n, 1, k)[2]: seq(seq(T(n, k), k=1..n), n=1..10);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}]; b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0}, If[i > n, {0, 0}, Sum[ Function[p, p + If[t > 0 && t - j < 1, {0, p[[1]]*i}, {0, 0}]][g[i]^j*b[n - i*j, i + 1, Max[0, t - j]]/j!*multinomial[n, Append[Table[i, {j}], n - i*j]]], {j, 0, n/i}]]]; T[n_, k_] := b[n, 1, k][[2]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)