A350252 Number of non-alternating patterns of length n.
0, 0, 1, 7, 53, 439, 4121, 43675, 519249, 6867463, 100228877, 1602238783, 27866817297, 524175098299, 10606844137009, 229807953097903, 5308671596791901, 130261745042452855, 3383732450013895721, 92770140175473602755, 2677110186541556215233
Offset: 0
Keywords
Examples
The a(2) = 1 and a(3) = 7 non-alternating patterns: (1,1) (1,1,1) (1,1,2) (1,2,2) (1,2,3) (2,1,1) (2,2,1) (3,2,1) The a(4) = 53 non-alternating patterns: 2112 3124 4123 1112 2134 1234 3112 2113 1123 2211 3214 4213 1211 2314 1243 3123 2123 1213 2212 3412 4312 1212 2341 1324 3211 2213 1223 3421 4321 1221 2413 1342 3212 2311 1231 1222 2431 1423 3213 2312 1232 1432 3312 2313 1233 3321 2321 1312 2331 1321 1322 1323 1332
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Mathematica
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&& Length[Split[Sign[Differences[y]]]]==Length[y]-1]; Table[Length[Select[Join@@Permutations/@allnorm[n],!wigQ[#]&]],{n,0,6}]
Extensions
Terms a(9) and beyond from Andrew Howroyd, Feb 04 2022
Comments