cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350263 Triangle read by rows. T(n, k) = BellPolynomial(n, -k).

Original entry on oeis.org

1, 0, -1, 0, 0, 2, 0, 1, 2, -3, 0, 1, -6, -21, -20, 0, -2, -14, 24, 172, 370, 0, -9, 26, 195, 108, -1105, -4074, 0, -9, 178, -111, -2388, -4805, 2046, 34293, 0, 50, 90, -3072, -3220, 23670, 87510, 111860, -138312, 0, 267, -2382, -4053, 47532, 121995, -115458, -1193157, -2966088, -2932533
Offset: 0

Views

Author

Peter Luschny, Dec 23 2021

Keywords

Examples

			[0] 1
[1] 0,  -1
[2] 0,   0,     2
[3] 0,   1,     2,    -3
[4] 0,   1,    -6,   -21,   -20
[5] 0,  -2,   -14,    24,   172,    370
[6] 0,  -9,    26,   195,   108,  -1105, -  4074
[7] 0,  -9,   178,  -111, -2388,  -4805,    2046,    34293
[8] 0,  50,    90, -3072, -3220,  23670,   87510,   111860,  -138312
[9] 0, 267, -2382, -4053, 47532, 121995, -115458, -1193157, -2966088, -2932533
		

Crossrefs

Main diagonal: A292866, column 1: A000587, variant: A292861.

Programs

  • Maple
    A350263 := (n, k) -> ifelse(n = 0, 1, BellB(n, -k)):
    seq(seq(A350263(n, k), k = 0..n), n = 0..9);
  • Mathematica
    T[n_, k_] := BellB[n, -k]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten