cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A351002 Number of solutions to +-1 +- 3 +- 6 +- 10 +- ... +- n*(n + 1)/2 = n.

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 3, 0, 4, 3, 9, 0, 27, 43, 71, 0, 190, 318, 604, 0, 1846, 3127, 5664, 0, 19048, 34065, 62045, 0, 205713, 378243, 705836, 0, 2403370, 4434940, 8276125, 0, 28980680, 54167797, 101541048, 0, 358095372, 674776903, 1274888645, 0, 4551828850, 8612421500
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 29 2022

Keywords

Crossrefs

Programs

  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def b(n, i):
        if n > i*(i+1)*(i+2)//6: return 0
        if i == 0: return 1
        return b(n+i*(i+1)//2, i-1) + b(abs(n-i*(i+1)//2), i-1)
    def a(n): return b(n, n)
    print([a(n) for n in range(50)]) # Michael S. Branicky, Jan 29 2022

Formula

a(n) = [x^n] Product_{k=1..n} (x^(k*(k+1)/2) + 1/x^(k*(k+1)/2)).
Showing 1-1 of 1 results.