A350294 a(n) = floor(n*2^n/(n + 1)).
0, 1, 2, 6, 12, 26, 54, 112, 227, 460, 930, 1877, 3780, 7606, 15291, 30720, 61680, 123790, 248346, 498073, 998643, 2001826, 4011942, 8039082, 16106127, 32263876, 64623350, 129424237, 259179060, 518975214, 1039104990, 2080374784, 4164816771, 8337289456, 16689015778
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..3305
- Heiko Harborth and Hauke Nienborg, Saturated vertex TurĂ¡n numbers for cube graphs, Congr. Num. 208 (2011), 183-188.
- Mathonline, Cube Graphs
Programs
-
Maple
f:= n -> floor(n*2^n/(n+1)): map(f, [$0..40]); # Robert Israel, Dec 27 2021
-
Mathematica
Table[Floor[n 2^n/(n+1)],{n,0,34}]
Formula
A350293(n) <= a(n) (see Lemma 1 in Harborth and Nienborg).
a(n) ~ 2^n.