A350323 Abelian orders m for which there exist at least 4 groups of order m.
1225, 4225, 5929, 7225, 13225, 14161, 15925, 17689, 20449, 20825, 23275, 25921, 28175, 34225, 34969, 43681, 45325, 46225, 47089, 48841, 50575, 55225, 57575, 61009, 64925, 67081, 70225, 70805, 71825, 72275, 77077, 80275, 82075, 89401, 89425, 92575, 93925, 96775, 97175
Offset: 1
Keywords
Examples
For primes p, q, if p^2 !== 1 (mod q) and q^2 !== 1 (mod p), then p^2*q^2 is a term since the 4 groups of that order are C_{p^2*q^2}, C_p X C_{p*q^2}, C_q X C_{p^2*q}, C_{p*q} X C_{p*q}.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Programs
-
PARI
isA051532(n) = my(f=factor(n), v=vector(#f[, 1])); for(i=1, #v, if(f[i, 2]>2, return(0), v[i]=f[i, 1]^f[i, 2])); for(i=1, #v, for(j=i+1, #v, if(v[i]%f[j, 1]==1 || v[j]%f[i, 1]==1, return(0)))); 1 \\ Charles R Greathouse IV's program for A051532 isA350323(n) = isA051532(n) && (bigomega(n)-omega(n)>1)
Comments