A350322 Abelian orders m for which there exist exactly 2 groups of order m.
4, 9, 25, 45, 49, 99, 121, 153, 169, 175, 207, 245, 261, 289, 325, 361, 369, 423, 425, 475, 477, 529, 531, 539, 575, 637, 639, 725, 747, 765, 801, 833, 841, 845, 847, 909, 925, 931, 961, 963, 1017, 1035, 1075, 1127, 1175, 1179, 1233, 1305, 1325, 1341, 1369, 1445, 1475
Offset: 1
Keywords
Examples
For primes p, p^2 is a term since the 2 groups of that order are C_{p^2} and C_p X C_p. For primes p, q, if p^2 !== 1 (mod q) and q !== 1 (mod p), then p^2*q is a term since the 2 groups of that order are C_{p^2*q} and C_p X C_{p*q}.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
isA054395(n) = { my(p=gcd(n, eulerphi(n)), f); if (!isprime(p), return(0)); if (n%p^2 == 0, return(1 == gcd(p+1, n))); f = factor(n); 1 == sum(k=1, matsize(f)[1], f[k, 1]%p==1); } \\ Gheorghe Coserea's program for A054395 isA350322(n) = isA054395(n) && (bigomega(n)-omega(n)==1)
-
PARI
isA051532(n) = my(f=factor(n), v=vector(#f[, 1])); for(i=1, #v, if(f[i, 2]>2, return(0), v[i]=f[i, 1]^f[i, 2])); for(i=1, #v, for(j=i+1, #v, if(v[i]%f[j, 1]==1 || v[j]%f[i, 1]==1, return(0)))); 1 \\ Charles R Greathouse IV's program for A051532 isA350322(n) = isA051532(n) && (bigomega(n)-omega(n)==1)
-
Python
def is_ok(m): f = factorint(m) return ( sum(f.values()) == len(f) + 1 and all((q - 1) % p > 0 for p in f for q in f) and (m := next(p for p, e in f.items() if e == 2) ** 2 - 1) and all(m % q > 0 for q in f)) # David Radcliffe, Jul 30 2025
Comments