A350326 Binomial transform of A339443(n).
1, 2, 5, 11, 24, 52, 110, 227, 463, 947, 1956, 4073, 8501, 17695, 36654, 75585, 155396, 318958, 654018, 1339502, 2738706, 5586721, 11368212, 23081884, 46793949, 94805057, 192116284, 389627700, 791036691, 1607529164, 3268715492, 6647212980, 13512728367, 27449702179
Offset: 0
Keywords
Crossrefs
Cf. A339443.
Programs
-
Mathematica
a[n_] := (1 - (-1)^n) (1 + Floor[Sqrt[2 n - 1]])/2 - (((-1)^n - 2 n - 1)/2 + 2 Sum[Floor[(k + 1)/2], {k, -1 + Floor[Sqrt[2 n - 2 - (-1)^n]]}]) (-1)^n/2; Table[Sum[Binomial[n, i]*a[n - i + 1], {i, 0, n}], {n, 0, 40}]
Formula
a(n) = Sum_{k=0..n} binomial(n,k) * A339443(n-k+1).