A350332 Numbers p^2*q, p < q odd primes such that p does not divide q-1.
45, 99, 153, 175, 207, 261, 325, 369, 423, 425, 475, 477, 531, 539, 575, 637, 639, 725, 747, 801, 833, 909, 925, 931, 963, 1017, 1075, 1127, 1175, 1179, 1233, 1325, 1341, 1475, 1503, 1519, 1557, 1573, 1611, 1675, 1719, 1773, 1813, 1825, 1975, 2009, 2043, 2057
Offset: 1
Keywords
Examples
99 = 3^2 * 11, 3 and 11 are odd and 3 does not divide 11-1 = 10, hence 99 is a term. 175 = 5^2 * 7, 5 and 7 are odd and 5 does not divide 7-1 = 6, hence 115 is another term.
References
- Pascal Ortiz, Exercices d'Algèbre, Collection CAPES / Agrégation, Ellipses, problème 1.35, pp. 70-74, 2004.
Crossrefs
Programs
-
Mathematica
q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; e == {2, 1} && ! Divisible[p[[2]] - 1, p[[1]]]]; Select[Range[2000], q] (* Amiram Eldar, Dec 25 2021 *)
-
PARI
isok(m) = my(f=factor(m)); if (f[, 2] == [2, 1]~, my(p=f[1, 1], q=f[2, 1]); ((q-1) % p)); \\ Michel Marcus, Dec 25 2021
-
Python
from sympy import integer_nthroot, primerange def aupto(limit): aset, maxp = set(), integer_nthroot(limit, 3)[0] for p in primerange(3, maxp+1): pp = p*p for q in primerange(p+1, limit//pp+1): if (q-1)%p != 0: aset.add(pp*q) return sorted(aset) print(aupto(2060)) # Michael S. Branicky, Dec 25 2021
Extensions
More terms from Michael S. Branicky, Dec 25 2021
Comments