cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350332 Numbers p^2*q, p < q odd primes such that p does not divide q-1.

Original entry on oeis.org

45, 99, 153, 175, 207, 261, 325, 369, 423, 425, 475, 477, 531, 539, 575, 637, 639, 725, 747, 801, 833, 909, 925, 931, 963, 1017, 1075, 1127, 1175, 1179, 1233, 1325, 1341, 1475, 1503, 1519, 1557, 1573, 1611, 1675, 1719, 1773, 1813, 1825, 1975, 2009, 2043, 2057
Offset: 1

Views

Author

Bernard Schott, Dec 25 2021

Keywords

Comments

For these terms m, there are precisely 2 groups of order m, so this is a subsequence of A054395.
The 2 groups are abelian; they are C_{p^2*q} and (C_p X C_p) X C_q, where C means cyclic groups of the stated order and the symbol X means direct product.

Examples

			99 = 3^2 * 11, 3 and 11 are odd and 3 does not divide 11-1 = 10, hence 99 is a term.
175 = 5^2 * 7, 5 and 7 are odd and 5 does not divide 7-1 = 6, hence 115 is another term.
		

References

  • Pascal Ortiz, Exercices d'Algèbre, Collection CAPES / Agrégation, Ellipses, problème 1.35, pp. 70-74, 2004.

Crossrefs

Subsequence of A051532, A054395, A054753 and of A060687.
Other subsequences of A054753 linked with order of groups: A079704, A143928, A349495, A350115, A350245.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; e == {2, 1} && ! Divisible[p[[2]] - 1, p[[1]]]]; Select[Range[2000], q] (* Amiram Eldar, Dec 25 2021 *)
  • PARI
    isok(m) = my(f=factor(m)); if (f[, 2] == [2, 1]~, my(p=f[1, 1], q=f[2, 1]); ((q-1) % p)); \\ Michel Marcus, Dec 25 2021
  • Python
    from sympy import integer_nthroot, primerange
    def aupto(limit):
        aset, maxp = set(), integer_nthroot(limit, 3)[0]
        for p in primerange(3, maxp+1):
            pp = p*p
            for q in primerange(p+1, limit//pp+1):
                if (q-1)%p != 0:
                    aset.add(pp*q)
        return sorted(aset)
    print(aupto(2060)) # Michael S. Branicky, Dec 25 2021
    

Extensions

More terms from Michael S. Branicky, Dec 25 2021