A350347 Consider primitive 120-degree integer triangles with sides A < B < C = A002476(n). This sequence gives the values of B.
5, 8, 16, 24, 33, 35, 56, 45, 63, 51, 57, 77, 95, 120, 91, 115, 143, 112, 105, 175, 165, 195, 168, 145, 224, 261, 217, 192, 288, 247, 320, 272, 280, 315, 273, 259, 385, 304, 399, 407, 299, 287, 440, 437, 301, 387, 425, 533, 416, 368, 575, 520, 423, 459, 616, 517, 441, 400, 539, 616, 637, 600, 480, 520, 728, 735, 725
Offset: 1
Keywords
Examples
n | ( A, B, C) ----+------------- 1 | ( 3, 5, 7) 2 | ( 7, 8, 13) 3 | ( 5, 16, 19) 4 | (11, 24, 31) 5 | ( 7, 33, 37) 6 | (13, 35, 43) 7 | ( 9, 56, 61) 8 | (32, 45, 67) 9 | (17, 63, 73)
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
- Wikipedia, Integer triangle
Programs
Formula
Let A = A349772(n). A^2 + A*B + B^2 = C^2.