cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350352 Products of three or more distinct prime numbers.

Original entry on oeis.org

30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154, 165, 170, 174, 182, 186, 190, 195, 210, 222, 230, 231, 238, 246, 255, 258, 266, 273, 282, 285, 286, 290, 310, 318, 322, 330, 345, 354, 357, 366, 370, 374, 385, 390, 399, 402, 406, 410, 418, 426, 429, 430
Offset: 1

Views

Author

Gus Wiseman, Jan 11 2022

Keywords

Comments

First differs from A336568 in lacking 420.

Examples

			The terms and their prime indices begin:
     30: {1,2,3}     182: {1,4,6}      285: {2,3,8}
     42: {1,2,4}     186: {1,2,11}     286: {1,5,6}
     66: {1,2,5}     190: {1,3,8}      290: {1,3,10}
     70: {1,3,4}     195: {2,3,6}      310: {1,3,11}
     78: {1,2,6}     210: {1,2,3,4}    318: {1,2,16}
    102: {1,2,7}     222: {1,2,12}     322: {1,4,9}
    105: {2,3,4}     230: {1,3,9}      330: {1,2,3,5}
    110: {1,3,5}     231: {2,4,5}      345: {2,3,9}
    114: {1,2,8}     238: {1,4,7}      354: {1,2,17}
    130: {1,3,6}     246: {1,2,13}     357: {2,4,7}
    138: {1,2,9}     255: {2,3,7}      366: {1,2,18}
    154: {1,4,5}     258: {1,2,14}     370: {1,3,12}
    165: {2,3,5}     266: {1,4,8}      374: {1,5,7}
    170: {1,3,7}     273: {2,4,6}      385: {3,4,5}
    174: {1,2,10}    282: {1,2,15}     390: {1,2,3,6}
		

Crossrefs

This is the squarefree case of A033942.
Including squarefree semiprimes gives A120944.
The squarefree complement consists of 1 and A167171.
These are the Heinz numbers of the partitions counted by A347548.
A000040 lists prime numbers (exactly 1 prime factor).
A005117 lists squarefree numbers.
A006881 lists squarefree numbers with exactly 2 prime factors.
A007304 lists squarefree numbers with exactly 3 prime factors.
A046386 lists squarefree numbers with exactly 4 prime factors.

Programs

  • Mathematica
    Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]>=3&]
  • PARI
    is(n,f=factor(n))=my(e=f[,2]); #e>2 && vecmax(e)==1 \\ Charles R Greathouse IV, Jul 08 2022
    
  • PARI
    list(lim)=my(v=List()); forsquarefree(n=30,lim\1, if(#n[2][,2]>2, listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Jul 08 2022
  • Python
    from sympy import factorint
    def ok(n): f = factorint(n, multiple=True); return len(f) == len(set(f)) > 2
    print([k for k in range(431) if ok(k)]) # Michael S. Branicky, Jan 14 2022
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A350352(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(3,x.bit_length())))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 11 2024