A350352 Products of three or more distinct prime numbers.
30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154, 165, 170, 174, 182, 186, 190, 195, 210, 222, 230, 231, 238, 246, 255, 258, 266, 273, 282, 285, 286, 290, 310, 318, 322, 330, 345, 354, 357, 366, 370, 374, 385, 390, 399, 402, 406, 410, 418, 426, 429, 430
Offset: 1
Keywords
Examples
The terms and their prime indices begin: 30: {1,2,3} 182: {1,4,6} 285: {2,3,8} 42: {1,2,4} 186: {1,2,11} 286: {1,5,6} 66: {1,2,5} 190: {1,3,8} 290: {1,3,10} 70: {1,3,4} 195: {2,3,6} 310: {1,3,11} 78: {1,2,6} 210: {1,2,3,4} 318: {1,2,16} 102: {1,2,7} 222: {1,2,12} 322: {1,4,9} 105: {2,3,4} 230: {1,3,9} 330: {1,2,3,5} 110: {1,3,5} 231: {2,4,5} 345: {2,3,9} 114: {1,2,8} 238: {1,4,7} 354: {1,2,17} 130: {1,3,6} 246: {1,2,13} 357: {2,4,7} 138: {1,2,9} 255: {2,3,7} 366: {1,2,18} 154: {1,4,5} 258: {1,2,14} 370: {1,3,12} 165: {2,3,5} 266: {1,4,8} 374: {1,5,7} 170: {1,3,7} 273: {2,4,6} 385: {3,4,5} 174: {1,2,10} 282: {1,2,15} 390: {1,2,3,6}
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Crossrefs
This is the squarefree case of A033942.
Including squarefree semiprimes gives A120944.
The squarefree complement consists of 1 and A167171.
These are the Heinz numbers of the partitions counted by A347548.
A000040 lists prime numbers (exactly 1 prime factor).
A005117 lists squarefree numbers.
A006881 lists squarefree numbers with exactly 2 prime factors.
A007304 lists squarefree numbers with exactly 3 prime factors.
A046386 lists squarefree numbers with exactly 4 prime factors.
Programs
-
Mathematica
Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]>=3&]
-
PARI
is(n,f=factor(n))=my(e=f[,2]); #e>2 && vecmax(e)==1 \\ Charles R Greathouse IV, Jul 08 2022
-
PARI
list(lim)=my(v=List()); forsquarefree(n=30,lim\1, if(#n[2][,2]>2, listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Jul 08 2022
-
Python
from sympy import factorint def ok(n): f = factorint(n, multiple=True); return len(f) == len(set(f)) > 2 print([k for k in range(431) if ok(k)]) # Michael S. Branicky, Jan 14 2022
-
Python
from math import isqrt, prod from sympy import primerange, integer_nthroot, primepi def A350352(n): def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n+x-sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(3,x.bit_length()))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f,n,n) # Chai Wah Wu, Sep 11 2024
Comments