A350353 Numbers whose multiset of prime factors has a permutation that is not weakly alternating.
30, 36, 42, 60, 66, 70, 72, 78, 84, 90, 100, 102, 105, 108, 110, 114, 120, 126, 130, 132, 138, 140, 144, 150, 154, 156, 165, 168, 170, 174, 180, 182, 186, 190, 195, 196, 198, 200, 204, 210, 216, 220, 222, 225, 228, 230, 231, 234, 238, 240, 246, 252, 255, 258
Offset: 1
Keywords
Examples
The terms together with a (generally not unique) non-weakly alternating permutation of each multiset of prime indices begin: 30 : (1,2,3) 100 : (1,3,3,1) 36 : (1,2,2,1) 102 : (1,2,7) 42 : (1,2,4) 105 : (2,3,4) 60 : (1,1,2,3) 108 : (1,2,2,1,2) 66 : (1,2,5) 110 : (1,3,5) 70 : (1,3,4) 114 : (1,2,8) 72 : (1,1,2,2,1) 120 : (1,1,1,2,3) 78 : (1,2,6) 126 : (1,2,4,2) 84 : (1,1,2,4) 130 : (1,3,6) 90 : (1,2,3,2) 132 : (1,1,2,5)
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}]; Select[Range[100],Select[Permutations[primeMS[#]],!whkQ[#]&&!whkQ[-#]&]!={}&]
Comments