A350354 Number of up/down (or down/up) patterns of length n.
1, 1, 1, 3, 11, 51, 281, 1809, 13293, 109899, 1009343, 10196895, 112375149, 1341625041, 17249416717, 237618939975, 3491542594727, 54510993341523, 901106621474801, 15723571927404189, 288804851413993941, 5569918636750820751, 112537773142244706427
Offset: 0
Keywords
Examples
The a(0) = 1 through a(4) = 11 patterns: () (1) (1,2) (1,2,1) (1,2,1,2) (1,3,2) (1,2,1,3) (2,3,1) (1,3,1,2) (1,3,2,3) (1,3,2,4) (1,4,2,3) (2,3,1,2) (2,3,1,3) (2,3,1,4) (2,4,1,3) (3,4,1,2)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
This is the up/down (or down/up) case of A345194.
A205497 are the Euler zig-zag polynomials.
A005649 counts anti-run patterns.
A019536 counts necklace patterns.
A335515 counts patterns matching (1,2,3).
A349058 counts weakly alternating patterns.
A350252 counts non-alternating patterns.
Row sums of A079502.
Programs
-
Maple
# Using the recurrence by Kyle Petersen from A205497. G := proc(n) option remember; local F; if n = 0 then 1/(1 - q*x) else F := G(n - 1); simplify((p/(p - q))*(subs({p = q, q = p}, F) - subs(p = q, F))) fi end: A350354 := n -> 2^n*subs({p = 1, q = 1, x = 1/2}, G(n)*(1 - x)^(n + 1)): seq(A350354(n), n = 0..22); # Peter Luschny, Jun 03 2024
-
Mathematica
allnorm[n_]:=If[n<=0,{{}},Function[s, Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; updoQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]>y[[m+1]],y[[m]]
-
PARI
F(p,x) = {sum(k=0, p, (-1)^((k+1)\2)*binomial((p+k)\2, k)*x^k)} R(n,k) = {Vec(if(k==1, 0, F(k-2,-x)/F(k-1,x)-1) + x + O(x*x^n))} seq(n)= {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Feb 04 2022
Extensions
Terms a(10) and beyond from Andrew Howroyd, Feb 04 2022
Comments