A350386 a(n) is the sum of the even exponents in the prime factorization of n.
0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 4, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 4, 4, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 2, 2, 4, 0, 0, 0, 0, 0
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := If[EvenQ[e], e, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = my(f=factor(n)); sum(k=1, #f~, if (!(f[k, 2] % 2), f[k, 2])); \\ Michel Marcus, Dec 29 2021
-
Python
from sympy import factorint def a(n): return sum(e for e in factorint(n).values() if e%2 == 0) print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Dec 28 2021
Formula
Additive with a(p^e) = e if e is even and 0 otherwise.
a(n) = 0 if and only if n is an exponentially odd number (A268335).
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} 2*p/((p-1)*(p+1)^2) = 0.7961706018...
Comments