cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350389 a(n) is the largest unitary divisor of n that is an exponentially odd number (A268335).

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 8, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 24, 1, 26, 27, 7, 29, 30, 31, 32, 33, 34, 35, 1, 37, 38, 39, 40, 41, 42, 43, 11, 5, 46, 47, 3, 1, 2, 51, 13, 53, 54, 55, 56, 57, 58, 59, 15, 61, 62, 7, 1, 65, 66, 67, 17, 69, 70, 71
Offset: 1

Views

Author

Amiram Eldar, Dec 28 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, f[i,1]^f[i,2], 1));} \\ Amiram Eldar, Sep 18 2023
  • Python
    from math import prod
    from sympy import factorint
    def A350389(n): return prod(p**e if e % 2 else 1 for p, e in factorint(n).items()) # Chai Wah Wu, Feb 24 2022
    

Formula

Multiplicative with a(p^e) = p^e if e is odd and 1 otherwise.
a(n) = n/A350388(n).
A001222(a(n)) = A350387(n).
a(n) = 1 if and only if n is a positive square (A000290 \ {0}).
a(n) = n if and only if n is an exponentially odd number (A268335).
Sum_{k=1..n} a(k) ~ (1/2)*c*n^2, where c = Product_{p prime} (1 - p/(1+p+p^2+p^3)) = 0.7406196365...
Dirichlet g.f.: zeta(2*s-2) * zeta(2*s) * Product_{p prime} (1 + 1/p^(s-1) - 1/p^(2*s-2) - 1/p^(3*s-1)). - Amiram Eldar, Sep 18 2023