A350401 Primes p such that if q is the next prime, p*q mod (A004086(p)+A004086(q)) is prime.
3, 5, 7, 11, 13, 23, 29, 31, 53, 59, 71, 73, 83, 89, 101, 107, 109, 127, 137, 149, 163, 173, 181, 191, 193, 211, 223, 227, 233, 239, 257, 271, 277, 281, 283, 307, 317, 367, 373, 389, 409, 419, 431, 449, 461, 463, 467, 479, 491, 509, 521, 523, 547, 577, 587, 593, 607, 613, 631, 641, 643, 653, 659
Offset: 1
Examples
a(6) = 23 is a member because it is prime, the next prime is 29, and 23*29 mod (32+92) = 667 mod 124 = 47 is prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A004086.
Programs
-
Maple
revdigs:= proc(n) local L,i,m; L:= convert(n,base,10); m:= nops(L); add(L[i]*10^(m-i),i=1..m) end proc: q:= 2: qr:= 2: R:= NULL: count:= 0: while count < 100 do p:=q; pr:= qr; q:= nextprime(p); qr:= revdigs(q); s:= p*q mod (pr+qr); if isprime(s) then R:= R, p; count:= count+1; fi od: R;