A350402 Numbers k such that binomial(k, 2) divides binomial(2^k-2, 2).
2, 3, 7, 11, 19, 31, 43, 127, 163, 211, 271, 311, 331, 379, 487, 571, 631, 811, 883, 991, 1459, 1471, 1747, 2311, 2531, 2647, 2791, 2971, 3079, 3631, 3943, 4091, 5171, 5419, 6571, 7591, 8863, 8911, 9199, 9791, 9931, 10891, 11827, 11971, 13591, 14407, 15391, 16759, 17011, 18523, 19531, 21871, 22111, 23431, 24967
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[n: n in [2..25000] | IsZero(Binomial(2^n-2, 2) mod Binomial(n, 2))];
-
Mathematica
Select[Range[2, 25000], Divisible[Binomial[2^# - 2, 2], Binomial[#,2]] &] (* Amiram Eldar, Dec 29 2021 *)
-
PARI
isok(n) = (n>1) && ((binomial(2^n-2, 2) % binomial(n, 2)) == 0); \\ Michel Marcus, Jan 04 2022
-
PARI
is(n)=my(m=n^2-n,t=Mod(2,m)^n-2); t*(t-1)==0 \\ Charles R Greathouse IV, Jan 20 2022
Comments