cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350402 Numbers k such that binomial(k, 2) divides binomial(2^k-2, 2).

Original entry on oeis.org

2, 3, 7, 11, 19, 31, 43, 127, 163, 211, 271, 311, 331, 379, 487, 571, 631, 811, 883, 991, 1459, 1471, 1747, 2311, 2531, 2647, 2791, 2971, 3079, 3631, 3943, 4091, 5171, 5419, 6571, 7591, 8863, 8911, 9199, 9791, 9931, 10891, 11827, 11971, 13591, 14407, 15391, 16759, 17011, 18523, 19531, 21871, 22111, 23431, 24967
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 29 2021

Keywords

Comments

Conjecture: aside from the first term, this is a subsequence of A094179 (numbers congruent to 3 mod 4 which are divisible only by primes congruent to 3 mod 4).
The conjecture is false: a(2295) = 508606771 = 19531 * 26041 is not in A094179, nor even A004614. - Charles R Greathouse IV, Jan 22 2022

Crossrefs

Supersequence of A069051.
Cf. A069051 (binomial(k,2) divides binomial(2^k-1, 2)?), A094179, A350176.

Programs

  • Magma
    [n: n in [2..25000] |  IsZero(Binomial(2^n-2, 2) mod Binomial(n, 2))];
    
  • Mathematica
    Select[Range[2, 25000], Divisible[Binomial[2^# - 2, 2], Binomial[#,2]] &] (* Amiram Eldar, Dec 29 2021 *)
  • PARI
    isok(n) = (n>1) && ((binomial(2^n-2, 2) % binomial(n, 2)) == 0); \\ Michel Marcus, Jan 04 2022
    
  • PARI
    is(n)=my(m=n^2-n,t=Mod(2,m)^n-2); t*(t-1)==0 \\ Charles R Greathouse IV, Jan 20 2022