cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350446 Number T(n,k) of endofunctions on [n] with exactly k cycles of length larger than 1; triangle T(n,k), n>=0, 0<=k<=floor(n/2), read by rows.

Original entry on oeis.org

1, 1, 3, 1, 16, 11, 125, 128, 3, 1296, 1734, 95, 16807, 27409, 2425, 15, 262144, 499400, 61054, 945, 4782969, 10346328, 1605534, 42280, 105, 100000000, 240722160, 44981292, 1706012, 11025, 2357947691, 6222652233, 1351343346, 67291910, 763875, 945
Offset: 0

Views

Author

Alois P. Heinz, Dec 31 2021

Keywords

Examples

			Triangle T(n,k) begins:
           1;
           1;
           3,          1;
          16,         11;
         125,        128,          3;
        1296,       1734,         95;
       16807,      27409,       2425,       15;
      262144,     499400,      61054,      945;
     4782969,   10346328,    1605534,    42280,    105;
   100000000,  240722160,   44981292,  1706012,  11025;
  2357947691, 6222652233, 1351343346, 67291910, 763875, 945;
  ...
		

Crossrefs

Column k=0 gives A000272(n+1).
Row sums give A000312.
T(2n,n) gives A001147.

Programs

  • Maple
    c:= proc(n) option remember; add(n!*n^(n-k-1)/(n-k)!, k=2..n) end:
    t:= proc(n) option remember; n^(n-1) end:
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(
          b(n-i)*binomial(n-1, i-1)*(c(i)*x+t(i)), i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
    seq(T(n), n=0..12);
    # second Maple program:
    egf := k-> (LambertW(-x)-log(1+LambertW(-x)))^k/(exp(LambertW(-x))*k!):
    A350446 := (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
    seq(print(seq(A350446(n, k), k=0..n/2)), n=0..10); # Mélika Tebni, Mar 23 2023
  • Mathematica
    c[n_] := c[n] = Sum[n!*n^(n - k - 1)/(n - k)!, {k, 2, n}];
    t[n_] := t[n] = n^(n - 1);
    b[n_] := b[n] = Expand[If[n == 0, 1, Sum[
         b[n - i]*Binomial[n - 1, i - 1]*(c[i]*x + t[i]), {i, 1, n}]]];
    T[n_] :=  With[{p = b[n]}, Table[Coefficient[p, x, i], {i, 0, n/2}]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 06 2022, after Alois P. Heinz *)

Formula

From Mélika Tebni, Mar 23 2023: (Start)
E.g.f. of column k: (W(-x)-log(1 + W(-x)))^k / (exp(W(-x))*k!), W(x) the Lambert W-function.
T(n,k) = Sum_{j=k..n} n^(n-j)*binomial(n-1,j-1)*A136394(j,k), for n > 0.
T(n,k) = Sum_{j=k..n} (n-j+1)^(n-j-1)*binomial(n,j)*A350452(j,k).
Sum_{k=0..n/2} (k+1)*T(n,k) = A190314(n), for n > 0.
Sum_{k=0..n/2} 2^k*T(n,k) = A217701(n). (End)